直接插入排序
在排序的过程中,记录序列R[1..n]的状态为:
-----------------------------------------
有序序列R[1..(i-1)] R[i] 无序序列R[(i+1)..n]
-----------------------------------------
基本思想:将记录R[i]插入倒有序子序列R[1..i-1]中,使记录的有序序列从R[1..i-1]到R[1..i]
算法实现:
int main(){ //int a[] = {9,8,7,6,5,4,3,2,1,0}; //BinSort(a,10); //StrInsSort1(a,10); //StrInsSort(a,10); retrun 0; }
void StrInsSort(int R[],int size){ //本算法对R[0,,size-1]进行直接插入排序 for(int i = 1;i<size;i++){//假定地一个记录有序 //i表示的待比较的元素,我们会对每一个元素进行比较,因此比较 i<size int temp = R[i]; int j = i-1; while(j>=0 && temp<R[j]){ //从后向前查找插入位置,同时将大于待排序记录的元素向后移动; R[j+1] = R[j]; j--; } R[j+1] = temp;//将待排序元素放到合适的位置 //while循环外的j表示大于R[j]小于或等于temp, //所以temp的位置应该j的后一个位置,即j+1的位置 } for(int i = 0;i<size;i++){ printf("%d\n",R[i]); } }
上面的while循环中的j>=0为了避免向前查找合适位置而导致j值超出数组界限,
可以使用监视哨来改建算法,减少循环中比较的次数;--》我们可以利用摸个元素来存放当前待排序记录,来达到避免数组超界和减少比较次数的目的
void StrInsSort1(int a[],int size){ //使用监视哨,减少循环比较的次数 //监视哨,就是利用数组的某个元素来存放当前待排序记录, //来达到避免数组越界和减少比较次数 //int *A = (int*)malloc(sizeof(int)*(size+1)); int A[size+1]; A[0] = 0; for(int i = 1;i<=size;i++){ A[i] = a[i-1]; } //A[0] for(int i = 1;i<=size;i++){ A[0] = A[i]; int j = i-1; while(A[0]<A[j]){ A[j+1] = A[j]; j--; } A[j+1] = A[0]; } for(int i = 1;i<=size;i++){ printf("%d\n",A[i]); } }
=======================
折半排序算法
基本思想:在直接插入排序算法中,当第i个记录要插入倒前面i-1个记录序列中,可利用折半查找的方式来确定插入位置,减少比较次数;
关键点:边界值的选取!!!----》1,选择插入点 2,移动数据 3,插入第i个记录
算法:
void BinSort(int R[],int size){ //直接插入排序,当n很小时,较为适用,但是当n较大时,效率不高 //将第i个元素插入到前i-1个有序的序列时,折半查找 //对R[1,,n]进行这般查找 for(int i = 1;i<size;i++){//假定第一个元素有序 int temp = R[i]; int low = 0; int high = i-1; while(low <= high){ int m = (low+high)/2;//折半 if(temp<R[m]) high = m-1;//插入点低半区----这里是关键,跳出while的地方,low>high else low = m+1; } int j = i-1; while(j>=high+1){ R[j+1] = R[j]; j--; } //在这里想一想,low<=high意味着什么 //意味着low>high,所以插入点应该在high的某一侧(就是high的右侧,high+1的位置) //到底是那一侧呢?我们得看一看吧; //关键点在high = m-1这一句 R[j+1] = temp; //R[high+1] = temp } for(int i = 0;i<size;i++){ printf("%d\n",R[i]); } }
模式记忆:
在排序数组a[0,1..n]中利用折半方式搜索某个数target,
low = 0;(下标表示)
high = n;(下标表示,不考虑元素个数)
while(low<=high){
mid = low+(high-1ow)/2;
if(target<a[mid])
high = mid-1;//target在低半区
else if(target>a[mid])
low = mid+1;//target在高半区
else
return mid;//find the solution!!!
}
while循环结束后,如果low>high,那么target应该在high的右侧,就是high+1的位置
如果low==high,那么target就在mid的位置;
我们照这上面的分析写一个查找算法例子:
int main(){ int a[100]; for(int i = 0;i<100;i++){ a[i] = i; } int low,high,mid; double target; low = 0; high = 100; cout<<"input>>"; cin>>target; while(low<=high){ mid = low + (high-low)/2; if(target<a[mid]){ high = mid-1;//target at the low-part }else if(target>a[mid]){ low = mid+1;//target at the high-part }else{ cout<<"a[mid]="<<mid<<endl; cout<<"high="<<high<<endl; cout<<"low="<<low<<endl; break;//find the solution; } } cout<<"high="<<high<<endl; cout<<"low="<<low<<endl; return 0; }
执行结果:
input>>45 a[mid]=45 high=45 low=45 ============ input>>23.5 high=23//表示23.5应该在high的右侧,就是a[high+1]=a[24]的位置 low=24
------------------------------------------
希尔排序(缩小增量排序):
思想:当待排序记录个数较少,并且待排记录基本有序;
1,将待排序的记录划分为几组,从而减少参与直接排序的数据量
2,当经过几次分组排序后,记录的排序已经基本有序,再对所有的记录实施最后的直接插入排序;
========
归并排序的归并方法:
很经典的while循环
/* * meger.h * * Created on: Apr 12, 2016 * Author: lizhen */ #ifndef MEGER_H_ #define MEGER_H_ #include <vector> using namespace std; class Solution { public: double meger(vector<int>& nums1, vector<int>& nums2) { vector<int> result; int lengtha = nums1.size(); int lengthb = nums2.size(); int i = 0,j = 0; for(;i<lengtha && j<lengthb;){ if(nums1[i]<=nums2[j]){ result.push_back(nums1[i++]); }else{ result.push_back(nums2[j++]); } }//for for(;i<lengtha;){ result.push_back(nums1[i++]); } for(;j<lengthb;){ result.push_back(nums2[j++]); } vector<int>::iterator vit = result.begin(); for(;vit!=result.end();){ cout<<*vit++<<" "; }cout<<endl; return -1; } }; #endif /* MEGER_H_ */
main函数
/* * main.cpp * * Created on: Apr 9, 2016 * Author: lizhen */ #include <iostream> #include <vector> //#include "listnode.h" //#include "remoelistd2.h" //#include "searchRotatedSA2.h" //#include "findMiniRotatedSortedArray2.h" //#include "medianTwoSortArray.h" #include "meger.h" using namespace std; int main(){ vector<int> vit1 = {1,2,3,4}; vector<int> vit2 = {1,2,3,4}; Solution s; cout<<s.meger(vit1,vit2)<<endl; return 0; }