图神经网络 The Graph neural network model

1 图神经网络(原始版本)

图神经网络现在的威力和用途也再慢慢加强 我从我看过的最原始和现在慢慢最新的论文不断写上我的看法和见解 本人出身数学 所以更喜欢数学推导   第一篇就介绍图神经网络想法的开端 之后的图神经网络模型 都是基于此慢慢改进。

2 能处理的领域

针对常见的旅行者问题 社交网络 分子结构 等等常见的非结构化数据皆能进行处理 不同点在于你g(x) 即输出函数如何设计,图神经模型的贡献在于如何去学习一个非结构数据并将其表征

3 模型

3.1 简介

首先 针对图而言 信息有两大类 一个为图节点信息 一个为图边的信息  图的节点包含了一个节点的“状态”,我们用x(i)来表示i节点的“状态” 这是模型经过学习之后 学到的关于图信息的表征  我们可以很直观的假设 一个点的“状态”与周围节点的状态 周围节点与本节点的边(可以认为是二者的距离) 周围节点的标签 然后我们用一个函数f 去学习  于是我们可以得到以下的

              

我们要做的工作就是去学习到整个图 每个节点的“状态” ,但是我们会发现一个问题 那就是 i节点的“状态‘’ x(i)依赖于j节点的状态x(j) 同理j点也是 二者不断地相互依赖 形成一个循环。模型的假设就是我们可以通过循环迭代 去求解全图的“状态”

3.2 

我们引入我们的输出函数g(x,l)即一个节点的输出会与此点的“状态”以及相连的边有关

 

 由此我们得到了我们整体模型的两个函数 一个去求解图的状态 一个去输出(根据实际任务)  

我们要解决的关键是f函数 如何去求解整个图的状态  数学上存在一个理论 即f对x的导数小于1时,我们可以保证 收敛    

迭代过程简单而言就是 用t轮的状态 去更新t+1轮的状态 ,最终得到全图收敛的状态。

3.3

                     

因此 现在我们可以将求解过程按轮次展开 其中的g与f都为神经网络 结构 你可以自己设计     我们将整个求解过程展开成如下形式 其中前面都是不断迭代求解图的状态过程 

3.4

前面介绍了图神经模型的大体思路 接下来 我将介绍梯度下降及求导过程 因为图神经网络在求解过程中 需要保证状态收敛 才可以进行下一步 所以求导迭代过程有所不同 

首先我们介绍一下一个隐函数的存在性

 

  此函数反映了我们真实需要的状态x与我们现在所求t轮的x(t)之间的距离 理论上可以证明 存在能让我们求解到完美x的参数w,继而将参数w与x联系起来。

3.5

然后在引入我们的损失函数e 此函数如何定义损失与你的输出函数g有密切相关 需要你自己设计 再次不在累述。根据模型展开结构 ,我们得到了如下的求导公式   

这个为通过时间的求导法则 很接近传统rnn 我也不再累述。 根据我们的假设 当迭代一定次数后 z(t)等于z(t+1)  

 根据(8)得到(9)   我们再根据我们之前证明存在的隐函数,以及根据隐函数求导法则得到(10), (11)为另一个方向求解导数 不根据我们模型的展开,直接根据偏导定义直接求得结果  将(9)(10)(11)带入得到了以下的求导法则  

再次求导公式中 全部转化为对参数w的求导     接下来为z(T)的一个迭代过程 类似于一个数列的求和        

至此我们得到了我们全部的求导法则

    

 

3.6 模型算法

在求导过程中 我们是假设收敛到一个值时 我们才能采用我们推导的公式进行求导 因此 算法方面我们需要增加两个步骤 去验证收敛 然后才能继续求导    整体算法框图如下  

 

4 总结

整体模型的贡献就是解决了如何去学一个非结构数据的特征,采用迭代到收敛值的方法去学习,可能大家也发现了 针对两个点之间的联系 边 此模型并没有怎么重点关注 现在的图神经思想类似 不过加入了边的学习。

5 问题与自己想法

首先1) 此模型在计算过程中 要保证f对x的导数小于1 这点会让模型无法加深 层数一高 必然出现梯度消失之类问题 

       2) 没有有效去学习边的信息

       

 

转载于:https://www.cnblogs.com/shenliao/p/8960782.html

### 回答1: 图神经网络模型(Graph Neural Network Model)是一种基于图结构的深度学习模型,用于处理图数据。它可以对节点和边进行特征提取和表示学习,从而实现对图数据的分类、聚类、预测等任务。该模型在社交网络、化学分子结构、推荐系统等领域有广泛应用。 ### 回答2: 图神经网络Graph Neural Network Model,GNN)是一种新兴的人工智能技术,主要应用于图像、文本、语音等非结构化数据的分析和处理。与传统的神经网络相比,GNN不仅可以处理标量和向量数据,还可以有效地处理图结构数据。该算法已经被广泛应用于社交网络和推荐系统等领域。 GNN的核心思想是将图结构数据转化为节点特征向量。在传统的神经网络计算中,每个节点都有自己的参数和输入,GNN则不同,它通过传递和聚集节点之间的信息来学习高维特征数据。这种信息传递和聚集的过程可以通过使用邻接矩阵和节点度等数学工具来实现。 GNN的训练过程可以使用反向传播算法完成,与常规神经网络的训练过程类似。在应用于图像数据分类问题时,GNN可以通过多个学习层来提高准确性。这个技术的成功还在于GNN可以对图像的部分进行处理,而不是整个图像,从而提高了训练和测试的效率。 GNN技术的优势在于,它可以处理复杂的非线性数据,而且可以基于节点、边缘、子图等多种粒度进行分析。此外,GNN还可以处理不明确的、不完整的或噪声丰富的数据。例如,它可以在社交网络中预测用户的兴趣,或在进化发育生物学中预测蛋白质之间的交互。 总之,GNN是一种具有广泛应用前景的新型人工智能技术,其可以更好地解决图像分类、社交网络分析、蛋白质预测等问题。它将成为未来智能分析和推荐系统的重要组成部分。 ### 回答3: 图神经网络Graph Neural Network,GNN)是一种用于解决结构化数据(例如图、网格等)的机器学习模型。它是神经网络的一种扩展,能够利用节点和边之间的关系信息进行学习。与传统的神经网络不同的是,图神经网络是针对图等结构化数据的设计。 图神经网络的核心思想是将节点和边的表示融合起来,实现对图结构的整体建模。通过将节点和边的特征进行编码,可以学习到可以表达节点和边之间关系的空间嵌入向量。在这些向量的基础上,可以进行下一层节点和边的编码,并通过多层的神经网络来逐渐提高对图结构的建模能力。 目前,图神经网络在多个领域得到了广泛应用,例如化学分子分析、社交网络分析、3D建模等。在化学领域,图神经网络可以从化学分子的结构中预测化学性质,如溶解度、反应性等。在社交网络分析中,它可以对用户关系进行建模,并预测社交网络中用户的行为。在3D建模中,图神经网络可以对点云数据进行建模,并生成复杂的三维物体。 总之,图神经网络是一种适用于结构化数据的机器学习模型,可以从节点和边特征中学习到图结构中的信息并进行整体建模。它在各种领域得到了广泛应用,为研究者提供了一种有效的工具来分析和处理结构化数据。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值