[codewars 1] Format a string of names like 'Bart, Lisa & Maggie'.

本文介绍了一个简单的编程问题及其解决方案:给定一个包含名字哈希的数组,返回一个字符串,该字符串将所有名字以逗号分隔,最后两个名字用与号(&)连接。文章提供了两种实现方式,并附上了代码示例。

任务目标:

Given: an array containing hashes of names

Return: a string formatted as a list of names separated by commas except for the last two names, which should be separated by an ampersand.

Example:

namelist([ {'name': 'Bart'}, {'name': 'Lisa'}, {'name': 'Maggie'} ]) # returns 'Bart, Lisa & Maggie' namelist([ {'name': 'Bart'}, {'name': 'Lisa'} ]) # returns 'Bart & Lisa' namelist([ {'name': 'Bart'} ]) # returns 'Bart' namelist([]) # returns ''

解决方案:

def namelist(names):
    str = ""
    if len(names) == 0:
        pass
    elif len(names) == 1:
        str = str + (names[0]['name'])
    else:
        for each in names[0:-2]:
            str = str + (each['name']) + (', ')
        str = str + (names[-2]['name']) + (' & ') + (names[-1]['name'])
    return str

codewars上的解决方案:from ezetter

def namelist(names):
    if len(names)==0: return ''
    if len(names)==1: return names[0]['name']
    return ', '.join([n['name'] for n in names[:-1]]) + ' & ' + names[-1]['name']

 

参考资料

http://www.linuxidc.com/Linux/2011-09/42950.htm

转载于:https://www.cnblogs.com/minemine/p/7047913.html

内容概要:本文介绍了基于贝叶斯优化的CNN-LSTM混合神经网络在时间序列预测中的应用,并提供了完整的Matlab代码实现。该模型结合了卷积神经网络(CNN)在特征提取方面的优势与长短期记忆网络(LSTM)在处理时序依赖问题上的强大能力,形成一种高效的混合预测架构。通过贝叶斯优化算法自动调参,提升了模型的预测精度与泛化能力,适用于风电、光伏、负荷、交通流等多种复杂非线性系统的预测任务。文中还展示了模型训练流程、参数优化机制及实际预测效果分析,突出其在科研与工程应用中的实用性。; 适合人群:具备一定机器学习基基于贝叶斯优化CNN-LSTM混合神经网络预测(Matlab代码实现)础和Matlab编程经验的高校研究生、科研人员及从事预测建模的工程技术人员,尤其适合关注深度学习与智能优化算法结合应用的研究者。; 使用场景及目标:①解决各类时间序列预测问题,如能源出力预测、电力负荷预测、环境数据预测等;②学习如何将CNN-LSTM模型与贝叶斯优化相结合,提升模型性能;③掌握Matlab环境下深度学习模型搭建与超参数自动优化的技术路线。; 阅读建议:建议读者结合提供的Matlab代码进行实践操作,重点关注贝叶斯优化模块与混合神经网络结构的设计逻辑,通过调整数据集和参数加深对模型工作机制的理解,同时可将其框架迁移至其他预测场景中验证效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值