BSGSBSGSBSGS(又名北上广深算法)用于求解ax≡b(mod p)(p∈prime)a^x \equiv b(mod\ p)(p\in prime)ax≡b(mod p)(p∈prime)
BSGSBSGSBSGS其实就是用类似分块的思想优化暴力枚举
考虑在模意义下
令k=⌊p⌋+1k=\lfloor \sqrt p \rfloor+1k=⌊p⌋+1
那么x=qk−lx=qk-lx=qk−l
方程为 aqk−l≡b(mod p)a^{qk-l}\equiv b(mod\ p)aqk−l≡b(mod p)
移项后 aqk≡b∗al(mod p)a^{qk} \equiv b*a^l (mod\ p)aqk≡b∗al(mod p)
考虑到l,kl,kl,k的取值都最多只有O(p)O(\sqrt p)O(p)种
我们先枚举i∈(0,l)i\in(0,l)i∈(0,l),求出所有b∗aib*a^ib∗ai的取值
然后再枚举所有可能的qqq,i∈(1,k)i\in(1,k)i∈(1,k) ,求出所有的aika^{ik}aik看存不存在这个答案
第一个枚举到的就是答案了
#include<bits/stdc++.h>
#include<tr1/unordered_map>
using namespace std;
inline int read(){
char ch=getchar();
int res=0;
while(!isdigit(ch))ch=getchar();
while(isdigit(ch)) res=(res<<3)+(res<<1)+(ch^48),ch=getchar();
return res;
}
#define int long long
tr1::unordered_map<int,int> mp;
int n,k,mod;
inline int ksm(int a,int b,int res=1){
for(;b;b>>=1,a=a*a%mod){
if(b&1)res=res*a%mod;
}
return res;
}
signed main(){
mod=read(),k=read(),n=read();
int res=1;
int M=sqrt(mod)+1;
for(int i=0;i<=M;i++){
mp[n*res%mod]=i;
res=res*k%mod;
}
int ans=-1;
for(int i=1;i<=M;i++){
int tmp=ksm(k,i*M);
if(mp[tmp]){cout<<i*M-mp[tmp]<<'\n';return 0;};
}
cout<<"no solution";
}