有理数的阿基米德性质及其应用

本文探讨了有理数的阿基米德性质,并利用这一性质证明了集合A={x∈Q|x²<2或x<0}

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

  • 有理数的阿基米德性质

任何有理数\(r=\dfrac {p} {q}\leq |p|\)(这里\({p}\)\({q}\)都是整数并且\({q≠0}\)),因为\(r=\dfrac {p} {q}\leq \dfrac {|p|} {|q|}\leq \dfrac {|p|} {1}=|p|\),可知对于任何有理数\(r\),总存在比它大的正整数\(n\),即\(n>r\) ,比如这里可取\(n=|p|+1\),这就是有理数的阿基米德性质(Archimedean Property for rational numbers)1。如果\(r\)是任意正有理数,那么\(\dfrac {1} {r}\)也是任意正有理数,对前面这个不等式两边取倒数有\(\dfrac {1} {n}<\dfrac {1} {r}\) , 可知对于任何正有理数,总存在正整数\(n\)使得\(\dfrac {1} {n}\)小于它 ,综合这两条性质来看——即没有最大的正有理数也没有最小的正有理数。后面等我们学习到实数的阿基米德性质后,同样会明白没有最大的正实数也没有最小的正实数,进而所谓的“无穷大数”和“无穷小数”也就不存在实数系里了2

  • \(A=\{x\in \mathbb {Q}|x^{2}<2 或 x<0\}\),A内有最大的有理数吗?

你也许会想到:如果\(a\)是A内最大的有理数,那么必有一个有理数\(a'\)满足\(a<a'<\sqrt {2}\)(根据“任何两个不同实数间必然存在有理数”可得),故而A内没有最大的有理数。但是,这种方法依赖于实数或无理数的存在,假设我们仅仅只知道有理数,那么还能回答这个问题吗?能!用有理数的阿基米德性质就能解决这个问题,该问的解决对于我们后面以有理数为基础通过Dedekind Cut来构建数的连续体至关重要。

假设\(a\)是A内最大的有理数,只要选定足够大的正整数\(n\)就可以让\(a+\dfrac {1} {n}\)变得比\(a\)稍大一点点,那么我们很自然就会想:是不是存在正整数\(n\)使得\(\left(a +\dfrac {1} {n}\right) ^{2} < 2\)呢?若存在,那么我们便说明了A内有比\(a\)更大的有理数\(a +\dfrac {1} {n}\),从而说明A内无最大的有理数,下面是证明过程。

证明:假设A内有最大的有理数\(a\),那么\(a\)必然是正有理数且\(a^{2}<2\) 。如果证明存在正整数\(n\)使得\(\left(a +\dfrac {1} {n}\right) ^{2} < 2\),便可得出A内有比\(a\)更大的有理数\(a +\dfrac {1} {n}\),从而说明A内无最大的有理数。

\(\left(a +\dfrac {1} {n}\right) ^{2}=a^{2}+\dfrac {2a} {n}+\dfrac {1} {n^{2}}<a^{2}+\dfrac {2a} {n}+\dfrac {1} {n} =a^{2}+\dfrac {1} {n}(2a+1)\),如果能证明存在正整数\(n\)使得\(a^{2}+\dfrac {1} {n}(2a+1)<2\),那么\(\left(a +\dfrac {1} {n}\right) ^{2} < 2\)自然得证。对\(a^{2}+\dfrac {1} {n}(2a+1)<2\)稍作变形可得\(\dfrac {1} {n}<\dfrac {2-a^{2}}{2a+1}\) ,现在问题变成了是否存在正整数\(n\)使得\(\dfrac {1} {n}<\dfrac {2-a^{2}}{2a+1}\) ,因为\(a\)是正有理数且\(a^{2}<2\),所以\(\dfrac {2-a^{2}}{2a+1}\)是正有理数,由“对于任何正有理数,总存在正整数\(n\)使得\(\dfrac {1} {n}\)小于它”知存在这样的正整数\(n\),也就存在正整数\(n\)使得\(\left(a +\dfrac {1} {n}\right) ^{2} < 2\),所以A内无最大的有理数。

用类似的方法也可以证明\(\{x\in \mathbb {Q}|x^{2}>2且x>0\}\)内无最小的有理数3。下一节我将以这两个问题为例介绍数的连续体的构建,请继续关注!


  1. Charles Chapman Pugh, Real Mathematical Analysis, 1st Edition, P20

  2. James S. Howland, Basic Real Analysis, 1st Edition, P15

  3. 证明看这里

转载于:https://www.cnblogs.com/iMath/p/7597833.html

智慧消防安全与应急管理是现代城市安全管理的重要组成部分,随着城市化进程的加速,传统消防安全管理面临着诸多挑战,如消防安全责任制度落实不到位、消防设施日常管理不足、消防警力不足等。这些问题不仅制约了消防安全管理水平的提升,也给城市的安全运行带来了潜在风险。然而,物联网和智慧城市技术的快速发展为解决这些问题提供了新的思路和方法。智慧消防作为物联网和智慧城市技术结合的创新产物,正在成为社会消防安全管理的新趋势。 智慧消防的核心在于通过技术创新实现消防安全管理的智能化和自动化。其主要应用包括物联网消防安全监管平台、城市消防远程监控系统、智慧消防平台等,这些系统利用先进的技术手段,如GPS、GSM、GIS等,实现了对消防设施的实时监控、智能巡检和精准定位。例如,单兵定位方案通过信标点定位和微惯导加蓝牙辅助定位技术,能够精确掌握消防人员的位置信息,从而提高救援效率和安全性。智慧消防不仅提升了消防设施的管理质量,还优化了社会消防安全管理资源的配置,降低了管理成本。此外,智慧消防的应用还弥补了传统消防安全管理中数据处理方式落后、值班制度执行不彻底等问题,赋予了建筑消防设施智能化、自动化的能力。 尽管智慧消防技术在社会消防安全管理工作中的应用已经展现出巨大的潜力和优势,但目前仍处于实践探索阶段。相关职能部门和研究企业需要加大研究开发力度,进一步完善系统的功能与实效性。智慧消防的发展既面临风险,也充满机遇。当前,社会消防安全管理工作中仍存在制度执行不彻底、消防设施日常维护不到位等问题,而智慧消防理念与技术的应用可以有效弥补这些弊端,提高消防安全管理的自动化与智能化水平。随着智慧城市理念的不断发展和实践,智慧消防将成为推动社会消防安全管理工作与城市化进程同步发展的关键力量。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值