1897. tank 坦克游戏

传送门

显然考虑 $dp$,发现时间只和当前位置和攻击次数有关,设 $F[i][j][k]$ 表示当前位置为 $i,j$ ,攻击了 $k$ 次得到的最大分数

初始 $f[1][1][k]$ 为位置 $1,1$ 能打到的前 $k$ 大位置的分数和

每次移动都会多一行或多一列目标可以选择,攻击时显然优先攻击分数大的位置,因为要排序,

加上原本 $i,j,k$ 复杂度 $O(nm(T+ \log R)R)$ ,考虑优化

先考虑从 $f[i][j-1][k-t]$ 转移到 $f[i][j][k]$,设此时多打的 $t$ 个物品总价值为 $tmp[t]$

那么有 $f[i][j][k]=max(f[i][j-1][k-t]+tmp[t])$,然后我们能(并不)发现转移有单调性,即如果 $i,j,k$ 的最优决策点是 $t$

那么 $i,j,k+1$ 的最优决策点一定不小于 $t$,证明如下:

为了方便理解,我们把 $f[i][j-1][k-t]$ 时选择的数列看成一段区间,把 $tmp$ 看成另一段区间:

假设转移不单调,那么就会出现 $f[i][j][k+1]$ 的最优决策点 $t'<t$,在图上就是这个样子:

 上面的是 $f[i][j][k]$ 的最优转移,下面的是 $f[i][j][k+1]$ 的最优转移

 

因为是最优,那么上面说明,左边的 $p$ 那一段没有右边的 $p$ 那一段的值大(不然就不是最优转移了)

但是下面的却有告诉我们,左边的 $p$ 那一段比右边的 $p+1$ 那一段的值大

然后就矛盾了,所以转移一定的单调的

然后就可以决策单调性分治把复杂度变成 $O(nm(T+R \log R))$

具体看代码

 

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<cmath>
using namespace std;
typedef long long ll;
inline int read()
{
    int x=0,f=1; char ch=getchar();
    while(ch<'0'||ch>'9') { if(ch=='-') f=-1; ch=getchar(); }
    while(ch>='0'&&ch<='9') { x=(x<<1)+(x<<3)+(ch^48); ch=getchar(); }
    return x*f;
}
const int N=507,M=257;
inline bool cmp(const int &x,const int &y) { return x>y; }//从大到小排序
int n,m,S,T,a[N][N],f[N][N][M],ans;
int g[M],v[M],tmp[N*N],tot;
void solve(int ql,int qr,int l,int r)
{
    if(ql>qr) return; int mid=ql+qr>>1,pos=l;//pos记录决策点
    for(int i=l;i<=r&&i<=mid;i++)
    {
        int t=g[mid-i]+tmp[i];
        if(t>v[mid]) v[mid]=t,pos=i;
    }
    solve(ql,mid-1,l,pos); solve(mid+1,qr,pos,r);
}
int main()
{
    memset(f,~0x3f,sizeof(f));//一开始都不合法
    n=read(),m=read(),S=read(),T=read();
    for(int i=1;i<=n;i++)
        for(int j=1;j<=m;j++) a[i][j]=read();
    for(int i=1;i<=S+1;i++)
        for(int j=1;j<=S+1;j++) if(a[i][j]>0) tmp[++tot]=a[i][j];
    sort(tmp+1,tmp+tot+1,cmp); tot=min(tot,T);
    f[1][1][0]=0; for(int k=1;k<=tot;k++) f[1][1][k]=f[1][1][k-1]+tmp[k];//初始化
    int nn=max(1,n-S),mm=max(1,m-S);
    for(int i=1;i<=nn;i++)
        for(int j=1;j<=mm;j++)
        {
            int mx=T-i-j+2; if(mx<=0) continue;//mx是剩下的时间
            if(i>1)
            {
                for(int k=0;k<=mx;k++) g[k]=v[k]=f[i-1][j][k];
                if(i+S<=n)
                {
                    tot=0;
                    for(int k=max(1,j-S);k<=min(j+S,m);k++) if(a[i+S][k]>0) tmp[++tot]=a[i+S][k];
                    sort(tmp+1,tmp+tot+1,cmp); for(int k=2;k<=tot;k++) tmp[k]+=tmp[k-1];
                    if(tot) solve(1,mx,1,tot);
                }
                for(int k=0;k<=mx;k++) f[i][j][k]=v[k];
            }
            if(j>1)
            {
                for(int k=0;k<=mx;k++) g[k]=v[k]=f[i][j-1][k];
                if(j+S<=m)
                {
                    tot=0;
                    for(int k=max(1,i-S);k<=min(i+S,n);k++) if(a[k][j+S]>0) tmp[++tot]=a[k][j+S];
                    sort(tmp+1,tmp+tot+1,cmp); for(int k=2;k<=tot;k++) tmp[k]+=tmp[k-1];
                    if(tot) solve(1,mx,1,tot);
                }
                for(int k=0;k<=mx;k++) f[i][j][k]=max(f[i][j][k],v[k]);
            }
            for(int k=0;k<=mx;k++) ans=max(ans,f[i][j][k]);
        }
    printf("%d\n",ans);
    return 0;
}

 

转载于:https://www.cnblogs.com/LLTYYC/p/11356524.html

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值