多进程
多线程
协程
paramiko模块
1、基于UDP的套接字
UDP是面向数据报的,不是面向连接的
from socket import * udp_server=socket(AF_INET,SOCK_DGRAM) udp_server.bind(('127.0.0.1',8080)) while True: data,client_addr=udp_server.recvfrom(1024) print(data,client_addr) udp_server.sendto(data.upper(),client_addr)
from socket import * udp_client=socket(AF_INET,SOCK_DGRAM) while True: msg=input('>>: ').strip() udp_client.sendto(msg.encode('utf-8'),('127.0.0.1',8080)) data,server_addr=udp_client.recvfrom(1024) print(data.decode('utf-8'))
基于UDP的套接字不会发生粘包现象
from socket import * udp_server=socket(AF_INET,SOCK_DGRAM) udp_server.bind(('127.0.0.1',8080)) data1,client_addr=udp_server.recvfrom(3) print('data1',data1) data2,client_addr=udp_server.recvfrom(1024) print('data2',data2)
from socket import * udp_client=socket(AF_INET,SOCK_DGRAM) udp_client.sendto('hello'.encode('utf-8'),('127.0.0.1',8080)) udp_client.sendto('world'.encode('utf-8'),('127.0.0.1',8080))
并发的UDP套接字
#UDP服务端
import socketserver class MyUDPhandler(socketserver.BaseRequestHandler): def handle(self): print(self.request) self.request[1].sendto(self.request[0].upper(),self.client_address) if __name__ == '__main__': s=socketserver.ThreadingUDPServer(('127.0.0.1',8080),MyUDPhandler) s.serve_forever()
#UDP客户端 from socket import * udp_client=socket(AF_INET,SOCK_DGRAM) while True: msg=input('>>: ').strip() udp_client.sendto(msg.encode('utf-8'),('127.0.0.1',8080)) data,server_addr=udp_client.recvfrom(1024) print(data.decode('utf-8'))
2、进程理论知识
进程是对正在运行程序的一个抽象。 #一 操作系统的作用: 1:隐藏丑陋复杂的硬件接口,提供良好的抽象接口 2:管理、调度进程,并且将多个进程对硬件的竞争变得有序 进程与程序的区别: 程序仅仅只是一堆代码而已,而进程指的是程序的运行过程。 注:同一个程序执行两次,那也是两个进程,比如打开暴风影音,虽然都是同一个软件,但是一个可以播放苍井空,一个可以播放饭岛爱。 同步执行:一个进程在执行某个任务时,另外一个进程必须等待其执行完毕,才能继续执行 异步执行:一个进程在执行某个任务时,另外一个进程无需等待其执行完毕,就可以继续执行,当有消息返回时,系统会通知后者进行处理,这样可以提高执行效率
#开启进程的方式一 from multiprocessing import Process import time def work(name): print('task <%s> is runing' %name) time.sleep(0.5) print('task <%s> is done' % name) if __name__ == '__main__': #windows系统开启子进程一定要写在main函数下。 # Process(target=work,kwargs={'name':'egon'}) p1=Process(target=work,args=('egon',)) #一定要加,表示此为元组 p2=Process(target=work,args=('alex',)) p1.start() p2.start() print('主')
#join方法 待子进程运行完后主进程开始运行 from multiprocessing import Process import time def work(name): print('task <%s> is runing' %name) time.sleep(0.5) print('task <%s> is done' % name) if __name__ == '__main__': p1=Process(target=work,args=('egon',)) p2=Process(target=work,args=('alex',)) p3=Process(target=work,args=('yuanhao',)) p_l = [p1, p2, p3] for p in p_l: p.start() for p in p_l: p.join() # p1.join() #主进程等,等待p1运行结束 # p2.join() #主进程等,等待p2运行结束 # p3.join() #主进程等,等待p3运行结束 print('主')
#开启子进程的方式二 from multiprocessing import Process import time class MyProcess(Process): def __init__(self,name): super().__init__() self.name=name def run(self): print('task <%s> is runing' % self.name) time.sleep(0.5) print('task <%s> is done' % self.name) if __name__ == '__main__': p=MyProcess('egon') p.start() print('主')
#并发的套接字通讯 #服务端 from multiprocessing import Process from socket import * s=socket(AF_INET,SOCK_STREAM) s.setsockopt(SOL_SOCKET,SO_REUSEADDR,1) s.bind(('127.0.0.1',8080)) s.listen(5) def talK(conn,addr): while True: try: data=conn.recv(1024) if not data:break conn.send(data.upper()) except Exception: break conn.close() if __name__ == '__main__': while True: conn,addr=s.accept() p=Process(target=talK,args=(conn,addr)) #链接循环使用开启通讯循环子进程方式 p.start() s.close() #客户端 from socket import * c=socket(AF_INET,SOCK_STREAM) c.connect(('127.0.0.1',8080)) while True: msg=input('>>: ').strip() if not msg:continue c.send(msg.encode('utf-8')) data=c.recv(1024) print(data.decode('utf-8')) c.close()
#Process对象的其他方法和属性 from multiprocessing import Process import time,os def work(): print('parent:%s task <%s> is runing' %(os.getppid(),os.getpid())) time.sleep(1) print('parent:%s task <%s> is done' %(os.getppid(),os.getpid())) if __name__ == '__main__': p1=Process(target=work,args=('egon',),name='123123') #指定进程名p1.start() p1.terminate() #强制中止进程 如果p1有子进程,会出现僵尸进程 p1.is_alive() #True os过了一段时间才能回收p1进程 p1.name #进程名 p1.pid #进程号 os.getpid() #当前进程的pid os.getppid #父进程的pid windows cmd tasklist|findstr python(pycharm)
守护进程daemon
#守护进程daemon
#其一:守护进程会在主进程代码执行结束后就终止
#其二:守护进程内无法再开启子进程,否则抛出异常:AssertionError: daemonic processes are not allowed to have children
from multiprocessing import Process import time def work(name): print('task <%s> is runing' %name) time.sleep(0.5) print('task <%s> is done' % name) if __name__ == '__main__': p1=Process(target=work,args=('egon',)) p1.daemon = True #子进程start之前必须要要指定daemon=True #一定要在p.start()前设置,设置p为守护进程,禁止p创建子进程,并且父进程代码执行结束,p即终止运行 p1.start() print('主') #主进程代码运行完毕,守护进程就会结束 from multiprocessing import Process import time def foo(): print(123) time.sleep(1) print("end123") def bar(): print(456) time.sleep(3) print("end456") if __name__ == '__main__': p1=Process(target=foo) p2=Process(target=bar) p1.daemon=True p1.start() p2.start() print("main-------") #打印该行则主进程代码结束,则守护进程p1应该被终止,可能会有p1任务执行的打印信息123,因为主进程打印main----时,p1也执行了,但是随即被终止
同步锁mutex
#竞争带来的结果就是错乱,如何控制,就是加锁处理
#同步锁mutex from multiprocessing import Process,Lock import time def work(name,mutex): mutex.acquire() #加锁 print('task <%s> is runing' %name) time.sleep(2) print('task <%s> is done' % name) mutex.release() #解锁 if __name__ == '__main__': mutex=Lock() p1=Process(target=work,args=('egon',mutex)) #参数要指定mutex p2=Process(target=work,args=('alex',mutex)) p1.start() p2.start() print('主')
加锁可以保证多个进程修改同一块数据时,同一时间只能有一个任务可以进行修改,即串行的修改,没错,速度是慢了,但牺牲了速度却保证了数据安全。
虽然可以用文件共享数据实现进程间通信,但问题是:
1.效率低
2.需要自己加锁处理
模拟抢票
#db.txt {"count": 1} #序列化需要用双引号 import json import os import time from multiprocessing import Process,Lock def search(): dic=json.load(open('db.txt')) print('\033[32m[%s] 看到剩余票数<%s>\033[0m' %(os.getpid(),dic['count'])) def get_ticket(): dic = json.load(open('db.txt')) time.sleep(0.5) #模拟读数据库的网络延迟 if dic['count'] > 0: dic['count']-=1 time.sleep(0.5) # 模拟写数据库的网络延迟 json.dump(dic,open('db.txt','w')) print('\033[31m%s 购票成功\033[0m' %os.getpid()) def task(mutex): search() mutex.acquire() get_ticket() mutex.release() if __name__ == '__main__': mutex=Lock() for i in range(10): p=Process(target=task,args=(mutex,)) p.start()
共享数据
from multiprocessing import Process,Manager,Lock def task(dic,mutex): with mutex: dic['count']-=1 if __name__ == '__main__': mutex=Lock() m=Manager() dic=m.dict({'count':100}) p_l=[] for i in range(10): p=Process(target=task,args=(dic,mutex)) p_l.append(p) p.start() for p in p_l: p.join() print(dic)
队列
#为此mutiprocessing模块为我们提供了基于消息的IPC通信机制:队列和管道。
1 队列和管道都是将数据存放于内存中
2 队列又是基于(管道+锁)实现的,可以让我们从复杂的锁问题中解脱出来,
我们应该尽量避免使用共享数据,尽可能使用消息传递和队列,避免处理复杂的同步和锁问题,而且在进程数目增多时,往往可以获得更好的可获展性。
from multiprocessing import Queue q=Queue(3) q.put('first') q.put('second') q.put('third') # q.put('fourth') #满了会一直卡在这 print(q.get()) print(q.get()) print(q.get()) # print(q.get()) #空的话会一直卡在这 #了解 q=Queue(3) q.put('first',block=False) q.put('second',block=False) q.put('third',block=False) # q.put_nowait('fourth') == #q.put('fourth',block=False) #满了不会卡在这,会抛出一个异常 q.put('fourth',timeout=3) #指定超时时间
生产者消费者模型
from multiprocessing import Process,Queue import time,os def producer(q,name): for i in range(3): time.sleep(1) res='%s%s' %(name,i) q.put(res) print('\033[45m<%s> 生产了 [%s]\033[0m' %(os.getpid(),res)) def consumer(q): while True: res=q.get() if res is None:break time.sleep(1.5) print('\033[34m<%s> 吃了 [%s]\033[0m' % (os.getpid(), res)) if __name__ == '__main__': q=Queue() #生产者们:即厨师们 p1=Process(target=producer,args=(q,'包子')) p2=Process(target=producer,args=(q,'饺子')) p3=Process(target=producer,args=(q,'馄饨')) #消费者们:即吃货们 c1=Process(target=consumer,args=(q,)) c2=Process(target=consumer,args=(q,)) p1.start() p2.start() p3.start() c1.start() c2.start() p1.join() p2.join() p3.join() #待生产者们运行完毕 q.put(None) #队列中放入结束指定符,几个消费者就放入几个None q.put(None) print('主')
Joinable生产者消费者模型
#Joinablequeue #消费者发消息给生产者 from multiprocessing import Process, JoinableQueue import time, os def producer(q, name): for i in range(3): time.sleep(1) res = '%s%s' % (name, i) q.put(res) print('\033[45m<%s> 生产了 [%s]\033[0m' % (os.getpid(), res)) q.join() #待进程运行完毕 def consumer(q): while True: res = q.get() time.sleep(1.5) print('\033[34m<%s> 吃了 [%s]\033[0m' % (os.getpid(), res)) q.task_done() #消费者发消息给生产者 if __name__ == '__main__': q = JoinableQueue() # 生产者们:即厨师们 p1 = Process(target=producer, args=(q, '包子')) p2 = Process(target=producer, args=(q, '饺子')) p3 = Process(target=producer, args=(q, '馄饨')) # 消费者们:即吃货们 c1 = Process(target=consumer, args=(q,)) c2 = Process(target=consumer, args=(q,)) c1.daemon=True #消费者为守护进程 c2.daemon=True p1.start() p2.start() p3.start() c1.start() c2.start() p1.join() print('主')
进程池
创建进程池的类:如果指定numprocess为3,则进程池会从无到有创建三个进程,然后自始至终使用这三个进程去执行所有任务,不会开启其他进程
#进程池Pool from multiprocessing import Pool import os,time def work(n): print('task <%s> is runing' %os.getpid()) time.sleep(2) return n**2 if __name__ == '__main__': # print(os.cpu_count()) #CPU个数获得方式 p=Pool(4) #进程个数设置为CPU个数 #要创建的进程数,如果省略,将默认使用cpu_count()的值 res_l=[] for i in range(10): res=p.apply_async(work,args=(i,)) #异步方式提交任务 res_l.append(res)
#异步apply_async用法:如果使用异步提交的任务,主进程需要使用jion,等待进程池内任务都处理完,然后可以用get收集结果,否则,主进程结束,进程池可能还没来得及执行,也就跟着一起结束了
p.close() #不允许再给进程池加任务 join前必须要执行close,否则程序有问题 p.join() #主进程等待进程池中任务执行结束 for res in res_l: print(res.get()) #从进程池中获得任务执行的结果 ##使用get来获取apply_aync的结果,如果是apply,则没有get方法,因为apply是同步执行,立刻获取结果,也根本无需get
p.apply(func [, args [, kwargs]]):在一个池工作进程中执行func(*args,**kwargs),然后返回结果。需要强调的是:此操作并不会在所有池工作进程中并执行func函数。如果要通过不同参数并发地执行func函数,必须从不同线程调用p.apply()函数或者使用p.apply_async()
p.apply_async(func [, args [, kwargs]]):在一个池工作进程中执行func(*args,**kwargs),然后返回结果。此方法的结果是AsyncResult类的实例,callback是可调用对象,接收输入参数。当func的结果变为可用时,将理解传递给callback。callback禁止执行任何阻塞操作,否则将接收其他异步操作中的结果。
p.close():关闭进程池,防止进一步操作。如果所有操作持续挂起,它们将在工作进程终止前完成
P.jion():等待所有工作进程退出。此方法只能在close()或teminate()之后调用
进程池之回调函数
需要回调函数的场景:进程池中任何一个任务一旦处理完了,就立即告知主进程:我好了额,你可以处理我的结果了。主进程则调用一个函数去处理该结果,该函数即回调函数
我们可以把耗时间(阻塞)的任务放到进程池中,然后指定回调函数(主进程负责执行),这样主进程在执行回调函数时就省去了I/O的过程,直接拿到的是任务的结果。
我们可以把耗时间(阻塞)的任务放到进程池中,然后指定回调函数(主进程负责执行),这样主进程在执行回调函数时就省去了I/O的过程,直接拿到的是任务的结果。
#回调函数callback= #进程池异步方式提交任务,进程池结果使用回调函数处理任务执行结果 import requests #pip3 install requests import os,time from multiprocessing import Pool def get_page(url): print('<%s> get :%s' %(os.getpid(),url)) respone = requests.get(url) if respone.status_code == 200: return {'url':url,'text':respone.text} def parse_page(dic): print('<%s> parse :%s' %(os.getpid(),dic['url'])) time.sleep(0.5) res='url:%s size:%s\n' %(dic['url'],len(dic['text'])) #模拟解析网页内容 with open('db.txt','a') as f: f.write(res) if __name__ == '__main__': p=Pool(4) urls = [ 'http://www.baidu.com', 'http://www.baidu.com', 'http://www.baidu.com', 'http://www.baidu.com', 'http://www.baidu.com', 'http://www.baidu.com', 'http://www.baidu.com', ] for url in urls: p.apply_async(get_page,args=(url,),callback=parse_page) p.close() p.join() print('主进程pid:',os.getpid())
进程池控制并发的套接字通信
#服务端 from multiprocessing import Pool import os from socket import * s=socket(AF_INET,SOCK_STREAM) s.setsockopt(SOL_SOCKET,SO_REUSEADDR,1) s.bind(('127.0.0.1',8080)) s.listen(5) def talK(conn,addr): print(os.getpid()) while True: try: data=conn.recv(1024) if not data:break conn.send(data.upper()) except Exception: break conn.close() if __name__ == '__main__': p=Pool(4) while True: conn,addr=s.accept() p.apply_async(talK,args=(conn,addr)) s.close() #客户端 from socket import * c=socket(AF_INET,SOCK_STREAM) c.connect(('127.0.0.1',8080)) while True: msg=input('>>: ').strip() if not msg:continue c.send(msg.encode('utf-8')) data=c.recv(1024) print(data.decode('utf-8')) c.close()
paramiko模块
paramiko是一个用于做远程控制的模块,使用该模块可以对远程服务器进行命令或文件操作
pip3 install paramiko #在python3中
#用户名密码方式远程连接服务器执行命令获取结果 import paramiko # 创建SSH对象 ssh = paramiko.SSHClient() # 允许连接不在know_hosts文件中的主机 ssh.set_missing_host_key_policy(paramiko.AutoAddPolicy()) # 连接服务器 ssh.connect(hostname='120.92.84.249', port=22, username='root', password='123QWEasd') # 执行命令 stdin, stdout, stderr = ssh.exec_command('df') # 获取命令结果 result = stdout.read() print(result.decode('utf-8')) # 关闭连接 ssh.close() #公私钥方式远程连接服务器执行命令获取结果 # import paramiko private_key = paramiko.RSAKey.from_private_key_file('id_rsa') # 创建SSH对象 ssh = paramiko.SSHClient() # 允许连接不在know_hosts文件中的主机 ssh.set_missing_host_key_policy(paramiko.AutoAddPolicy()) # 连接服务器 ssh.connect(hostname='120.92.84.249', port=22, username='root', pkey=private_key) # 执行命令 stdin, stdout, stderr = ssh.exec_command('df') # 获取命令结果 result = stdout.read() print(result.decode('utf-8')) # 关闭连接 ssh.close() #paramiko利用sftp上传下载文件 import paramiko transport = paramiko.Transport(('120.92.84.249', 22)) transport.connect(username='root', password='123QWEasd') sftp = paramiko.SFTPClient.from_transport(transport) # 将location.py 上传至服务器 /tmp/test.py sftp.put('id_rsa', '/tmp/test.rsa') # 将remove_path 下载到本地 local_path # sftp.get('remove_path', 'local_path') transport.close()