【bzoj3545/bzoj3551】[ONTAK2010]Peaks/加强版 Kruskal+树上倍增+Dfs序+主席树

bzoj3545

题目描述

在Bytemountains有N座山峰,每座山峰有他的高度h_i。有些山峰之间有双向道路相连,共M条路径,每条路径有一个困难值,这个值越大表示越难走,现在有Q组询问,每组询问询问从点v开始只经过困难值小于等于x的路径所能到达的山峰中第k高的山峰,如果无解输出-1。 

输入

第一行三个数N,M,Q。
第二行N个数,第i个数为h_i
接下来M行,每行3个数a b c,表示从a到b有一条困难值为c的双向路径。
接下来Q行,每行三个数v x k,表示一组询问。 

输出

对于每组询问,输出一个整数表示答案。 

样例输入

10 11 4
1 2 3 4 5 6 7 8 9 10
1 4 4
2 5 3
9 8 2
7 8 10
7 1 4
6 7 1
6 4 8
2 1 5
10 8 10
3 4 7
3 4 6
1 5 2
1 5 6
1 5 8
8 9 2

样例输出

6
1
-1
8

bzoj3551

输入

接下来Q行,每行三个数v x k,表示一组询问。v=v xor lastans,x=x xor lastans,k=k xor lastans。如果lastans=-1则不变。


题解

Kruskal+倍增算法+dfs序+主席树

p3445允许离线,所以还可以用Treap启发式合并。

然而p3451强制在线,这样做肯定不行。

首先肯定是先Kruskal求最小生成树,而一般的最小生成树也无法表示任意两点间距离最大值。

这里用到一个黑科技:Kruskal重构树。

在求最小生成树时,不直接连接两个节点,而是将两个节点的祖先连接到一个新的节点上。

这个新的节点与这两个节点之间的边权就是边的长度。

这有什么好处?

上图是按照这种方式重构的一棵树,其中节点1~10为原节点,11~19为新加节点。

可以看出,从下至上的路径,边权是单调不减的(看作点权即大根堆)。

那么,想要寻找路径小于等于x的所有能到达的点,就可以从最下方的原节点向上查找最远的路径小于x的点,这个点的子树就是所求的点集合。

题目要求这个点集合里第k大的,需要使这些点连续出现,于是想到Dfs序。

我们可以构建一个Dfs序,然后使用主席树来维护并查询第k大。

需要注意的是这两道题都需要读入优化,否则会TLE。

以下为p3545的代码,若为p3551,只需要在询问时修改一小部分即可。

#include <cstdio>
#include <algorithm>
using namespace std;
struct node
{
    int x , y , z;
}e[500005];
struct data
{
    int num , rank;
}a[200005];
int f[200005] , log[200005] , fa[200005][18] , dis[200005][18] , deep[200005];
int head[200005] , to[200005] , val[200005] , next[200005] , cnt;
int lp[200005] , rp[200005] , pl , q[400005] , ref[200005] , top;
int ls[6000005] , rs[6000005] , si[6000005] , root[400005] , tot;
inline int read()
{
    int num = 0; char ch;
    while(ch < '0' || ch > '9') ch = getchar();
    while(ch >= '0' && ch <= '9') num = num * 10 + ch - '0' , ch = getchar();
    return num;
}
bool cmp1(data a , data b)
{
    return a.num < b.num;
}
bool cmp2(data a , data b)
{
    return a.rank < b.rank;
}
bool cmp3(node a , node b)
{
    return a.z < b.z;
}
int find(int x)
{
    return x == f[x] ? x : f[x] = find(f[x]);
}
void add(int x , int y , int z)
{
    to[++cnt] = y;
    val[cnt] = z;
    next[cnt] = head[x];
    head[x] = cnt;
}
void dfs(int x)
{
    int i;
    lp[x] = ++pl;
    q[pl] = a[x].num;
    for(i = head[x] ; i ; i = next[i])
    {
        if(to[i] != fa[x][0])
        {
            fa[to[i]][0] = x;
            deep[to[i]] = deep[x] + 1;
            dfs(to[i]);
        }
    }
    rp[x] = ++pl;
}
void init(int n)
{
    int i , j;
    for(i = 2 ; i <= n ; i ++ )
        log[i] = log[i >> 1] + 1;
    for(i = 1 ; i <= log[n] ; i ++ )
        for(j = 1 ; j <= n ; j ++ )
            if(deep[j] >= (1 << i))
                fa[j][i] = fa[fa[j][i - 1]][i - 1] , dis[j][i] = max(dis[j][i - 1] , dis[fa[j][i - 1]][i - 1]);
}
void pushup(int x)
{
    si[x] = si[ls[x]] + si[rs[x]];
}
void ins(int x , int &y , int l , int r , int p)
{
    y = ++tot;
    if(l == r)
    {
        si[y] = si[x] + 1;
        return;
    }
    int mid = (l + r) >> 1;
    if(p <= mid) rs[y] = rs[x] , ins(ls[x] , ls[y] , l , mid , p);
    else ls[y] = ls[x] , ins(rs[x] , rs[y] , mid + 1 , r , p);
    pushup(y);
}
int query(int x , int y , int l , int r , int p)
{
    if(l == r) return ref[l];
    int mid = (l + r) >> 1;
    if(si[ls[y]] - si[ls[x]] >= p) return query(ls[x] , ls[y] , l , mid , p);
    else return query(rs[x] , rs[y] , mid + 1 , r , p - si[ls[y]] + si[ls[x]]);
}
int main()
{
    int n , m , qu , i , tx , ty , v , x , k;
    n = read() , m = read() , qu = read();
    for(i = 1 ; i <= n ; i ++ )
        a[i].num= read() , a[i].rank = i;
    sort(a + 1 , a + n + 1 , cmp1);
    ref[0] = 0x8000000;
    for(i = 1 ; i <= n ; i ++ )
    {
        if(a[i].num != ref[top]) ref[++top] = a[i].num;
        a[i].num = top;
    }
    sort(a + 1 , a + n + 1 , cmp2);
    for(i = 1 ; i <= n << 1 ; i ++ ) 
        f[i] = i;
    for(i = 1 ; i <= m ; i ++ )
        e[i].x = read() , e[i].y = read() , e[i].z = read();
    sort(e + 1 , e + m + 1 , cmp3);
    for(i = 1 ; i <= m ; i ++ )
    {
        tx = find(e[i].x) , ty = find(e[i].y);
        if(tx != ty)
        {
            f[tx] = f[ty] = ++n;
            fa[tx][0] = fa[ty][0] = n;
            dis[tx][0] = dis[ty][0] = e[i].z;
            add(n , tx , e[i].z);
            add(n , ty , e[i].z);
        }
    }
    dfs(n);
    init(n);
    for(i = 1 ; i <= pl ; i ++ )
    {
        if(!q[i]) root[i] = root[i - 1];
        else ins(root[i - 1] , root[i] , 1 , top , q[i]);
    }
    while(qu -- )
    {
        v = read() , x = read() , k = read();
        tx = v;
        for(i = log[deep[v]] + 1 ; i >= 0 ; i -- )
            if(deep[tx] >= (1 << i) && dis[tx][i] <= x)
                tx = fa[tx][i];
        printf("%d\n" , si[root[rp[tx]]] - si[root[lp[tx]]] >= k ? query(root[lp[tx]] , root[rp[tx]] , 1 , top , si[root[rp[tx]]] - si[root[lp[tx]]] - k + 1) : -1);
    }
    return 0;
}

转载于:https://www.cnblogs.com/GXZlegend/p/6293547.html

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
题目描述 有一个 $n$ 个点的棋盘,每个点上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字和为 $S$。定义一个点 $(x,y)$ 的权值为 $a_x+a_y$,求所有满足条件的路径中,所有点的权值和的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个点的数字。 输出格式 输出一个整数,表示所有满足条件的路径中,所有点的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (树形dp) $O(n^3)$ 我们可以先将所有点的权值求出来,然后将其看作是一个有权值的图,问题就转化为了在这个图中求从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有点的权值和的最小值。 我们可以使用树形dp来解决这个问题,具体来说,我们可以将这个图看作是一棵树,每个点的父节点是它的前驱或者后继,然后我们从根节点开始,依次向下遍历,对于每个节点,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有点的权值和的最小值,然后再将这个值加上当前节点的权值,就可以得到从根节点到当前节点的路径中,所有点的权值和的最小值。 时间复杂度 树形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有点的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示点 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值