斐波那契数列的5种python写法
斐波那契数列(Fibonacci sequence),又称黄金分割数列、因数学家列昂纳多·斐波那契(Leonardoda Fibonacci)以兔子繁殖为例子而引入,故又称为“兔子数列”,指的是这样一个数列:1、1、2、3、5、8、13、21、34、……在数学上,斐波纳契数列以如下被以递归的方法定义:F(1)=1,F(2)=1, F(n)=F(n-1)+F(n-2)(n>=2,n∈N*)
斐波那契数列,难点在于算法,还有如果变成生成器,generator,就要用for循环去遍历可迭代的generator
第一种 递归法
def fib_recur(n):
assert n >= 0, "n > 0"
if n <= 1:
return n
return fib_recur(n-1) + fib_recur(n-2)
for i in range(1, 20):
print(fib_recur(i), end=' ')
写法最简洁,但是效率最低,会出现大量的重复计算,时间复杂度O(1.618^n),而且最深度1000
第二种 递推法
def fib_loop(n):
a, b = 0, 1
for i in range(n+1):
a, b = b, a + b
return a
for i in range(20):
print(fib_loop(i), end=' ')
递推法,就是递增法,时间复杂度是 O(n),呈线性增长,如果数据量巨大,速度会越拖越慢
第三种 生成器
def fib_loop_while(max):
a, b = 0, 1
while max > 0:
a, b = b, a+b
max -= 1
yield a
for i in fib_loop_while(10):
print(i)
带有yield的函数都被看成生成器,生成器是可迭代对象,且具备__iter__ 和 __next__方法, 可以遍历获取元素
python要求迭代器本身也是可迭代的,所以我们还要为迭代器实现__iter__方法,而__iter__方法要返回一个迭代器,迭代器自身正是一个迭代器,所以迭代器的__iter__方法返回自身即可
第四种 类实现内部魔法方法
class Fibonacci(object):
"""斐波那契数列迭代器"""
def __init__(self, n):
"""
:param n:int 指 生成数列的个数
"""
self.n = n
# 保存当前生成到的数据列的第几个数据,生成器中性质,记录位置,下一个位置的数据
self.current = 0
# 两个初始值
self.a = 0
self.b = 1
def __next__(self):
"""当使用next()函数调用时,就会获取下一个数"""
if self.current < self.n:
self.a, self.b = self.b, self.a + self.b
self.current += 1
return self.a
else:
raise StopIteration
def __iter__(self):
"""迭代器的__iter__ 返回自身即可"""
return self
if __name__ == '__main__':
fib = Fibonacci(15)
for num in fib:
print(num)
for循环的本质是通过不断调用next()函数实现的
for x in [1, 2, 3, 4, 5]:
pass
相当于:
# 首先获取可迭代对象
it = iter([1, 2, 3, 4, 5])
# while next
while True:
try:
next(it)
except StopIteration:
# 遇到StopIteration就退出循环
break
第五种 矩阵
### 1
import numpy
def fib_matrix(n):
res = pow((numpy.matrix([[1, 1], [1, 0]])), n) * numpy.matrix([[1], [0]])
return res[0][0]
for i in range(10):
print(int(fib_matrix(i)), end=' ')
### 2
# 使用矩阵计算斐波那契数列
def Fibonacci_Matrix_tool(n):
Matrix = npmpy.matrix("1 1;1 0")
# 返回是matrix类型
return pow(Matrix, n) # pow函数速度快于 使用双星好 **
def Fibonacci_Matrix(n):
result_list = []
for i in range(0, n):
result_list.append(numpy.array(Fibonacci_Matrix_tool(i))[0][0])
return result_list
# 调用
Fibonacci_Matrix(10)
因为幂运算可以使用二分加速,所以矩阵法的时间复杂度为 O(log n)
用科学计算包numpy来实现矩阵法 O(log n)