斐波那契数列的5种python实现写法

斐波那契数列的5种python写法

      斐波那契数列(Fibonacci sequence),又称黄金分割数列、因数学家列昂纳多·斐波那契(Leonardoda Fibonacci)以兔子繁殖为例子而引入,故又称为“兔子数列”,指的是这样一个数列:1、1、2、3、5、8、13、21、34、……在数学上,斐波纳契数列以如下被以递归的方法定义:F(1)=1,F(2)=1, F(n)=F(n-1)+F(n-2)(n>=2,n∈N*)

778496-20180713201252422-278494850.jpg

斐波那契数列,难点在于算法,还有如果变成生成器,generator,就要用for循环去遍历可迭代的generator

第一种 递归法

def fib_recur(n):
  assert n >= 0, "n > 0"
  if n <= 1:
    return n
  return fib_recur(n-1) + fib_recur(n-2)

for i in range(1, 20):
    print(fib_recur(i), end=' ')

写法最简洁,但是效率最低,会出现大量的重复计算,时间复杂度O(1.618^n),而且最深度1000

第二种 递推法

def fib_loop(n):
  a, b = 0, 1
  for i in range(n+1):
    a, b = b, a + b
    return a


for i in range(20):
  print(fib_loop(i), end=' ')

递推法,就是递增法,时间复杂度是 O(n),呈线性增长,如果数据量巨大,速度会越拖越慢

第三种 生成器

def fib_loop_while(max):
    a, b = 0, 1
    while max > 0:
        a, b = b, a+b
        max -= 1
        yield a


for i in fib_loop_while(10):
    print(i)

带有yield的函数都被看成生成器,生成器是可迭代对象,且具备__iter__ 和 __next__方法, 可以遍历获取元素
python要求迭代器本身也是可迭代的,所以我们还要为迭代器实现__iter__方法,而__iter__方法要返回一个迭代器,迭代器自身正是一个迭代器,所以迭代器的__iter__方法返回自身即可

第四种 类实现内部魔法方法

class Fibonacci(object):
    """斐波那契数列迭代器"""

    def __init__(self, n):
        """
        :param n:int 指 生成数列的个数
        """
        self.n = n
        # 保存当前生成到的数据列的第几个数据,生成器中性质,记录位置,下一个位置的数据
        self.current = 0
        # 两个初始值
        self.a = 0
        self.b = 1

    def __next__(self):
        """当使用next()函数调用时,就会获取下一个数"""
        if self.current < self.n:
            self.a, self.b = self.b, self.a + self.b
            self.current += 1
            return self.a
        else:
            raise StopIteration

    def __iter__(self):
        """迭代器的__iter__ 返回自身即可"""
        return self


if __name__ == '__main__':
    fib = Fibonacci(15)
    for num in fib:
        print(num)
for循环的本质是通过不断调用next()函数实现的
    for x in [1, 2, 3, 4, 5]:
        pass

相当于:

    # 首先获取可迭代对象
    it = iter([1, 2, 3, 4, 5])
    # while next
    while True:
        try:
            next(it)
        except StopIteration:
            # 遇到StopIteration就退出循环
            break
第五种 矩阵

778496-20180713200909560-1043089630.png

### 1
import numpy
def fib_matrix(n):
    res = pow((numpy.matrix([[1, 1], [1, 0]])), n) * numpy.matrix([[1], [0]])
    return res[0][0]
for i in range(10):
    print(int(fib_matrix(i)), end=' ')

### 2
# 使用矩阵计算斐波那契数列
def Fibonacci_Matrix_tool(n):
    Matrix = npmpy.matrix("1 1;1 0")
    # 返回是matrix类型
    return pow(Matrix, n)  # pow函数速度快于 使用双星好 **

def Fibonacci_Matrix(n):
    result_list = []
    for i in range(0, n):
        result_list.append(numpy.array(Fibonacci_Matrix_tool(i))[0][0])
    return result_list
# 调用
Fibonacci_Matrix(10)

因为幂运算可以使用二分加速,所以矩阵法的时间复杂度为 O(log n)
用科学计算包numpy来实现矩阵法 O(log n)

转载于:https://www.cnblogs.com/panlq/p/9307203.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值