Highways POJ-1751 最小生成树 Prim算法

本文介绍如何使用Prim算法解决最小生成树问题,通过实例讲解算法的具体应用,包括城市坐标输入、距离矩阵构建、Prim算法实现及输出所需边的两端点编号。

Highways POJ-1751 最小生成树 Prim算法

题意

有一个N个城市M条路的无向图,给你N个城市的坐标,然后现在该无向图已经有M条边了,问你还需要添加总长为多少的边能使得该无向图连通.输出需要添加边的两端点编号即可。

解题思路

这个可以使用最短路里面的Prim算法来实现,对于已经连接的城市,处理方式是令这两个城市之间的距离等于0即可。

prim算法可以实现我们具体的路径输出,Kruskal算法暂时还不大会。

代码实现

#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
const int inf=0x3f3f3f3f;
const int maxn=1e3;
struct Node{
    int x, y;
}node[maxn];
int mp[maxn][maxn];
int vis[maxn];
int dis[maxn];//这里的dis存储的是其他各个点,到最小生成树中任意一点的最小值。
int line[maxn];
int n, m, ans=0;
void init()
{
    for(int i=1; i<=n; i++)
    {
        dis[i]=mp[i][1];//开始的时候任选1号顶点加入到生成树中。这里是其他点到1号顶点的距离。
        line[i]=1; //默认没有加入到生成树的点距离生成树中最近距离的点是1;
        vis[i]=0; //默认没有点加入到生成树中。
    }
}
bool prim()
{
    ans=0;
    vis[1]=1;
    for(int i=1; i<n; i++)
    {
        int tmp=inf, k;
        for(int j=1; j<=n; j++)
        {
            if(!vis[j] && dis[j]<tmp)
            {
                tmp=dis[j];
                k=j;
            }
        }
        if(tmp==inf) return false;//生成最小树失败,该图不是连通的。
        vis[k]=1;
        ans+=dis[k];
        if(mp[k][line[k]]!=0)//这里判断不为0,是因为有的路已经修好了,就不用输出了
        {
            printf("%d %d\n", k, line[k]); //输出需要链接的两个点
        }
        for(int j=1; j<=n; j++) //以新加入生成树的点作为中间点,看看能优化
        {
            if(!vis[j] && dis[j] > mp[j][k])
            {
                line[j]=k;
                dis[j]=mp[j][k];
            }
        }
    }
    return true;
}
int main()
{
    while(scanf("%d", &n)!=EOF)
    {
        for(int i=1; i<=n; i++)
        {
            scanf("%d%d", &node[i].x, &node[i].y);
        }
        for(int i=1; i<=n; i++)
        {
            for(int j=1; j<=n; j++)
            {
                int tmp=(node[i].x-node[j].x)*(node[i].x-node[j].x)+(node[i].y-node[j].y)*(node[i].y-node[j].y);
                mp[i][j]=tmp;
                mp[j][i]=tmp;
            }
        }
        scanf("%d", &m);
        int x, y;
        for(int i=1; i<=m; i++)
        {
            scanf("%d%d", &x, &y);
            mp[x][y]=mp[y][x]=0;
        }
        init();
        prim();
    }
    return  0;
}

转载于:https://www.cnblogs.com/alking1001/p/11600669.html

内容概要:本文系统介绍了基于因果推断的智能经营模型体系,重点阐述了从传统信贷经营v1.0时代向智能信贷v2.0时代的演进。传统体系受限于人工策略、目标分散和效率低下,而v2.0体系以客户长期生命价值(LTV)为统一优化目标,依托高维特征自动化处理和因果推断技术,实现经营决策的精准化与自动化迭代。文章深入剖析了相关关系与因果关系的区别,指出传统机器学习在决策场景中的局限性,并引入因果推断解决反事实预估问题。通过自研Mono-CFR等算法,构建额度、价格、还款方式、权益等多维度因果模型,实现个体层面的决策效果预估,在控制风险的前提下提升人均盈利与放款规模。未来方向聚焦技术迭代与多经营手段的动态联合优化。; 适合人群:具备一定机器学习基础,从事金融科技、信贷产品、数据科学等相关领域的研发与策略人员,尤其是关注智能决策与因果推断应用的从业者;; 使用场景及目标:①解决信贷经营中“额度越高风险越低”等违反直觉的数据悖论;②实现个体维度的精准定价、定额与权益发放;③量化经营动作的增量效果,优化客户全生命周期价值(LTV);④推动从单点优化到多干预联合决策的智能化升级; 阅读建议:此资源强调因果推断在实际业务中的建模与落地,建议结合文中提到的额度、价格、权益等案例,深入理解反事实推理、混淆因子处理与多任务因果模型的设计思路,并关注其在A/B实验不足场景下的优势。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值