【转】康托展开(全排序到自然数空间的映射)

1. 概述

康托展开是将n个数的全排列映射到自然数空间{0, 1, ... , n!-1}的双射。在介绍康托展开之前,先介绍几个概念:变进制数、逆序对。

1.1 变进制

我们经常使用进制有:二进制、十进制、十六进制。这些进制称为“常数进制”,有一个共同点,即逢p进1;比如,十六进制是每位逢16进1,十进制数每位逢10进1。p进制数K可表示为

K = a1*p^1 + a2*p^2 + ... + an*p^n  ,其中1<= ai <= p-1

该表示法可表示任何一个自然数。

有这样一种变进制数:第1位逢2进1,第2位逢3进1,……,第n位逢n+1进1。变进制数可K表示为  

K = a1*1! + a2*2! + a3*3! + ... + an*n!  ,其中0 <= ai <= i

假设K第i位ai为i+1,则说明需要进位,且ai*i!=(i+1)*i!=1*(i+1)!,即向高位进1。这说明该变进制数能够正确进位,从而是一种合法的计数方式。

这种变进制数K有如下性质:
(1)当所有位ai均为i时,K有最大值(n+1)!-1
(2)当所有位ai均为0时,K有最小值0

1.2 逆序对

对有 n 个互异元素的有序集A,如果存在正整数 i, j 使得 1 ≤ i < j ≤ n 而且 A[i] > A[j],则 <A[i], A[j]> 这个有序对称为 A 的一个逆序对,也称作逆序数。

例如:数组 <2,3,8,6,1> 的逆序对为:<2,1> <3,1> <8,6> <8,1> <6,1> 共5个。

1.3 康托展开

假设我们有b0,b1,b2,b3,...,bn共n+1个不同的元素,并假设各元素之间有一种次序关系 b0<b1<b2<...<bn。对它们进行全排列,共产生(n+1)!种不同的排列。对于产生的任一排列,第i个元素(1 <= i <= n)与它前面的i个元素构成的逆序对的对数为di(0 <= di <= i),那么我们得到一个逆序对对数序列d1,d2,...,dn(0 <= di <= i)。这不就是前面的n位变进制数的每一位么?于是,我们用n位变进制数M来表示该排列:

M = d1*1! + d2*2! + ... + dn*n!

因此,每个排列都可以按这种方式表示成一个n位变进制数,并且该n位变进制数能与n+1个元素的全排列建立起一一对应的关系。上述这种将全排列映射到自然数空间的算法称为康托展开。

使用参考http://blog.csdn.net/synapse7/article/details/16901489

附:

我们经常使用的数的进制为“常数进制”,即始终逢p进1。例如,p进制数K可表示为
    K = a0*p^0 + a1*p^1 + a2*p^2 + ... + an*p^n (其中0 <= ai <= p-1),
它可以表示任何一个自然数。
对于这种常数进制表示法,以及各种进制之间的转换大家应该是很熟悉的了,但大家可能很少听说变进制数。这里我要介绍一种特殊的变进制数,它能够被用来实现全排列的Hash函数,并且该Hash函数能够实现完美的防碰撞和空间利用(不会发生碰撞,且所有空间被完全使用,不多不少)。这种全排列Hash函数也被称为全排列数化技术。下面,我们就来看看这种变进制数。
我们考查这样一种变进制数:第1位逢2进1,第2位逢3进1,……,第n位逢n+1进1。它的表示形式为
    K = a1*1! + a2*2! + a3*3! + ... + an*n! (其中0 <= ai <= i),
也可以扩展为如下形式(因为按定义a0始终为0),以与p进制表示相对应:
    K = a0*0! + a1*1! + a2*2! + a3*3! + ... + an*n! (其中0 <= ai <= i)。
(后面的变进制数均指这种变进制数,且采用前一种表示法)
先让我们来考查一下该变进制数的进位是否正确。假设变进制数K的第i位ai为i+1,需要进位,而ai*i!=(i+1)*i!=1*(i+1)!,即正确的向高位进1。这说明该变进制数能够正确进位,从而是一种合法的计数方式。
接下来我们考查n位变进制数K的性质:
(1)当所有位ai均为i时,此时K有最大值
    MAX[K] = 1*1! + 2*2! + 3*3! + ... + n*n!
           = 1! + 1*1! + 2*2! + 3*3! + ... + n*n! - 1
           = (1+1)*1! + 2*2! + 3*3! + ... + n*n! - 1
           = 2! + 2*2! + 3*3! + ... + n*n! - 1
           = ...
           = (n+1)!-1
    因此,n位K进制数的最大值为(n+1)!-1。
(2)当所有位ai均为0时,此时K有最小值0。
因此,n位变进制数能够表示0到(n+1)!-1的范围内的所有自然数,共(n+1)!个。
在一些状态空间搜索算法中,我们需要快速判断某个状态是否已经出现,此时常常使用Hash函数来实现。其中,有一类特殊的状态空间,它们是由全排列产生的,比如N数码问题。对于n个元素的全排列,共产生n!个不同的排列或状态。下面将讨论如何使用这里的变进制数来实现一个针对全排列的Hash函数。
从数的角度来看,全排列和变进制数都用到了阶乘。如果我们能够用0到n!-1这n!个连续的变进制数来表示n个元素的所有排列,那么就能够把全排列完全地数化,建立起全排列和自然数之间一一对应的关系,也就实现了一个完美的Hash函数。那么,我们的想法能否实现呢?答案是肯定的,下面将进行讨论。
假设我们有b0,b1,b2,b3,...,bn共n+1个不同的元素,并假设各元素之间有一种次序关系 b0<b1<b2<...<bn。对它们进行全排列,共产生(n+1)!种不同的排列。对于产生的任一排列 c0,c1,c2,..,cn,其中第i个元素ci(1 <= i <= n)与它前面的i个元素构成的逆序对的个数为di(0 <= di <= i),那么我们得到一个逆序数序列d1,d2,...,dn(0 <= di <= i)。这不就是前面的n位变进制数的各个位么?于是,我们用n位变进制数M来表示该排列:
   M = d1*1! + d2*2! + ... + dn*n!
因此,每个排列都可以按这种方式表示成一个n位变进制数。下面,我们来考查n位变进制数能否与n+1个元素的全排列建立起一一对应的关系。
由于n位变进制数能表示(n+1)!个不同的数,而n+1个元素的全排列刚好有(n+1)!个不同的排列,且每一个排列都已经能表示成一个n位变进制数。如果我们能够证明任意两个不同的排列产生两个不同的变进制数,那么我们就可以得出结论:
★ 定理1 n+1个元素的全排列的每一个排列对应着一个不同的n位变进制数。
对于全排列的任意两个不同的排列p0,p1,p2,...,pn(排列P)和q0,q1,q2,...,qn(排列Q),从后往前查找第一个不相同的元素,分别记为pi和qi(0 < i <= n)。
(1)如果qi > pi,那么,
如果在排列Q中qi之前的元素x与qi构成逆序对,即有x > qi,则在排列P中pi之前也有相同元素x > pi(因为x > qi且qi > pi),即在排列P中pi之前的元素x也与pi构成逆序对,所以pi的逆序数大于等于qi的逆序数。又qi与pi在排列P中构成pi的逆序对,所以pi的逆序数大于qi的逆序数。
(2)同理,如果pi > qi,那么qi的逆序数大于pi的逆序数。
因此,由(1)和(2)知,排列P和排列Q对应的变进制数至少有第i位不相同,即全排列的任意两个不同的排列具有不同的变进制数。至此,定理1得证。

转载于:https://www.cnblogs.com/sk-blogs/articles/3729548.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值