组合数学及其应用——斐波那契数

  斐波那契数列是一个非常有名的数列,它有着各种各样神奇的性质并且和自然界有着千丝万缕的联系。通过这篇文章我们将详细的阐述这个看似简单的数列的背后蕴含的神奇性质。

 

  引入斐波那契数的问题:

  在一年的开始,把新生的雌雄一对兔子放进一个笼子里。从第二个月开始,每个月这个雌兔子胜出雌雄一对兔子。而每对新出生的雌雄兔子也从第二个月开始生兔子,确定一年后笼子里有多少对兔子?

 

  分析:我们直接考虑通过递推的方法来得到这个问题的泛解(即任意个月后的数量都可以计算),我们记f[n]表示第n天的兔子数量,它的来源有两个:当月出生的兔子以及不是当月出生的兔子,显然不是当月出生的兔子的数量是一个月前即第n-1个月的兔子数量f[n-1];而当月出生的兔子的数量,考虑到兔子需要1个月生长发育,应该是第n-2个月的兔子数量f[n-2],即有如下的递推关系:

  f[n] = f[n-1] + f[n-2],n≥3

 

  下面给出斐波那契数的完整定义:

 

                        

  

 

 

  这个结果的神奇之处体现在,一个由整数组成的数列,通项形式是由无理数表示出来的,并且这其中蕴含了黄金分割,从这里出发将会推出斐波那契数很多有意思的性质

  值得一提的是,改变斐波那契数列的前两项,递推关系不变,我们采取相同的方法依然可以可以得到递推关系的解,但是这里c1、c2会发生改变。

   

转载于:https://www.cnblogs.com/rhythmic/p/5869850.html

第一章 引论 1.1 组合数学研究的对象 1.2 组合问题典型实例 1.2.1 分派问题 1. 2.2 染色问题 1.2.3 幻方问题 1.2.4 36军官问题 1.2.5 中国邮路问题 习 题 第二章 排列与组合 2.1 两个基本计数原理 2.2 无重集的排列与组合 2.3 重集的排列与组合 2.4 排列生成算法 2.4.1 序数法 2.4.2 字典序法 2.4.3 轮转法 2.5 组合生成算法 .2.6 应用举例 习 题 第三章 容斥原理 3.1 引 言 3.2 容斥原理 3.3 几个重要公式 3.4 错位排列 3.5 有限制的排列 3.6 棋阵多项式 3.7 禁位排列 习 题 第四章 鸽巢原理 4.1 鸽巢原理 4. 2 鸽巢原理的推广形式 4. 3 ramsey数 4.4 ramsey数的性质 4.5 ramsey定理 习 题 第五章 母函数 5.1 母函数概念 5.2 幂级数型母函数 5.3 整数的拆分 5.4 ferrers图 5.5 指数型母函数 习 题 第六章 递归关系 6.1 引言 6.2 几个典型的递归关系.. 6.3 用母函数方法求解递归关系 6.4 常系数线性齐次递归关系的求解 6.5 常系数线性非齐次递归关系的求解 6.6 非常系数非线性递归关系的求解 6.7 差分表法 6.8 stirling数 习 题 第七章 polya定理 7.1 有限集的映射 7.2 群的基本概念 7.3 置换群 7.4 置换的奇偶性 7.5 置换群下的共轭类 7.6 burnside引理 7.7 polya定理 7.8 polya定理的母函数型式 7.9 不标号图的计数 习 题 第八章 图论基础 8.1 图的基本概念 8.2 同构图、完全图与二分图 8.3 通路、回路与图的连通性 8.4 euler图与hamilton图 8.5 割集与树 8.6 图的矩阵表示法 8.7 平面图、对偶图与色数 8.8 匹配理论 8.9 网络流 习 题 第九章 拉丁方与区组设计 9.1 引言 9.2 拉丁方 9.3 有限域 9.4 正交拉丁方的构造 9.5 完全区组设计 9.6 平衡不完全区组设计(bibd) 9.7 区组设计的构造 9.8 steiner三连系 9.9 hadamard矩阵 习 题 第十章 线性规划 10.1 lp问题引例 10.2 lp问题的一般形式 10.3 lp问题的标准型 10.4 可行域和最优可行解 10.5 单纯形法 10.6 单纯形表格法 10.7 两阶段法 10.8 对偶原理 10.9 对偶单纯形法 10.10 应用举例 习 题 第十一章 组合优化算法与计算的时间复杂度理论 11.1 dijkstra算法 11.2 floyd算法 11.3 kruskal算法 11.4 求最优树的破圈法和统观法 11.5 二分图中最大匹配与最佳匹配的算法 11.6 fleury算法 11.7 中国邮路问题及其算法 11.8 深度优先搜索法--dfs算法 11.9 项目网络与关键路径法 11.10 网络最大流算法 11.11 状态转移法 11.12 好算法、坏算法和np类问题 11.13 npc类问题 11.14 货郎问题的近似解 习 题... 参考文献
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值