Hearthstone

题意:

有$n$个无中生有,有$m$个不同的杀,第$i$个杀掉$X_i$滴血,敌人血量$P$,求问第一回合就将敌人杀死的概率是多少。

 

解法:

二进制枚举$A$类,$B$类卡的顺序,这样就确定了取了几个$B$卡,dp即可

$f(i,j)$表示选了$i$个卡,伤害和为$j$的方案数。

$ans = \sum {f(j,P)j!(m-j)!}$

总效率$O(n 2^{n+m})$

认真读题。

 

#include <iostream>
#include <cstdio>
#include <cstring>

#define LL unsigned long long
#define N 23
#define bit(x) (1<<(x))

using namespace std;

int P, n, m;
int X[N];
LL f[N][N][1010], comb[N][N], fac[N];

LL gcd(LL a, LL b) {
    if (b == 0) return a;
    return gcd(b, a % b);
}

int main() {
    comb[0][0] = 1;
    fac[0] = 1;
    for (int i = 1; i <= 20; i++) {
        fac[i] = fac[i-1] * i;
        comb[i][0] = 1;
        for (int j = 1; j <= i; j++)
            comb[i][j] = comb[i-1][j-1] + comb[i-1][j];
    }
    int T;
    scanf("%d", &T);
    while (T--)
    {
        memset(f, 0, sizeof(f));
        scanf("%d %d %d", &P, &n, &m);
        X[0] = 0;
        for(int i = 1; i <= m; i++) scanf("%d", &X[i]);
        f[0][0][0] = 1;
        for(int i = 0; i < m; i++)
            for(int j = 0; j <= i; j++)
                for(int k = P; k >= 0; k--)
                {
                    f[i+1][j][k] += f[i][j][k];
                    f[i+1][j+1][min(k+X[i+1],P)] += f[i][j][k];
                }
        LL ans0 = 0, ans1 = 0;
        for(int S=0;S<(1<<(n+m));S++)
        {
            int cnt=0,i,j=0;
            for(i=0;i<n+m;i++) if(bit(i)&S) cnt++;
            if(cnt!=m) continue;
            ans1 += fac[m];
            cnt=1;
            for(i=0;i<n+m && cnt;i++)
            {
                if(bit(i)&S) cnt--, j++;
                else cnt++;
            }
            ans0 += f[m][j][P] * fac[m-j] * fac[j];
        }
        if(ans0 == 0) {
            puts("0/1");
            continue;
        }
        LL d = gcd(ans0, ans1);
        cout << ans0/d << '/' << ans1/d << endl;
    }
    return 0;
}
View Code

 

转载于:https://www.cnblogs.com/lawyer/p/6756811.html

内容概要:本文详细介绍了一个基于MATLAB实现的线性回归(LR)电力负荷预测项目实例,涵盖了从项目背景、模型架构、算法流程、代码实现到GUI界面设计的完整开发过程。项目通过整合历史负荷、气象数据、节假日信息等多源变量,构建多元线性回归模型,并结合特征工程、数据预处理、正则化方法(如岭回归、LASSO)和模型评估指标(RMSE、MAPE、R²等),提升预测精度与泛化能力。文中还展示了系统化的项目目录结构、自动化部署脚本、可视化分析及工程集成方案,支持批量预测与实时滚动更新,具备高度模块化、可解释性强、部署友好的特点。; 适合人群:具备一定MATLAB编程基础,从事电力系统分析、能源管理、智能电网或数据建模相关工作的工程师、研究人员及高校师生。; 使用场景及目标:①应用于城市电力调度、新能源消纳、智能楼宇用能管理等场景下的短期负荷预测;②帮助理解线性回归在实际工程项目中的建模流程、特征处理与模型优化方法;③通过GUI界面实现交互式预测与结果可视化,支持工程落地与决策辅助; 阅读建议:建议结合提供的完整代码与GUI示例进行实践操作,重点关注数据预处理、特征构造、正则化调优与模型评估部分,深入理解各模块的设计逻辑与工程封装思路,以便迁移到类似的时间序列预测任务中。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值