Description
C国的死对头A国这段时间正在进行军事演习,所以C国间谍头子Derek和他手下Tidy又开始忙乎了。A国在海岸线沿直线布置了N个工兵营地,Derek和Tidy的任务就是要监视这些工兵营地的活动情况。由于采取了某种先进的监测手段,所以每个工兵营地的人数C国都掌握的一清二楚,每个工兵营地的人数都有可能发生变动,可能增加或减少若干人手,但这些都逃不过C国的监视。
中央情报局要研究敌人究竟演习什么战术,所以Tidy要随时向Derek汇报某一段连续的工兵营地一共有多少人,例如Derek问:“Tidy,马上汇报第3个营地到第10个营地共有多少人!”Tidy就要马上开始计算这一段的总人数并汇报。但敌兵营地的人数经常变动,而Derek每次询问的段都不一样,所以Tidy不得不每次都一个一个营地的去数,很快就精疲力尽了,Derek对Tidy的计算速度越来越不满:"你个死肥仔,算得这么慢,我炒你鱿鱼!”Tidy想:“你自己来算算看,这可真是一项累人的工作!我恨不得你炒我鱿鱼呢!”无奈之下,Tidy只好打电话向计算机专家Windbreaker求救,Windbreaker说:“死肥仔,叫你平时做多点acm题和看多点算法书,现在尝到苦果了吧!”Tidy说:"我知错了。。。"但Windbreaker已经挂掉电话了。Tidy很苦恼,这么算他真的会崩溃的,聪明的读者,你能写个程序帮他完成这项工作吗?不过如果你的程序效率不够高的话,Tidy还是会受到Derek的责骂的.
中央情报局要研究敌人究竟演习什么战术,所以Tidy要随时向Derek汇报某一段连续的工兵营地一共有多少人,例如Derek问:“Tidy,马上汇报第3个营地到第10个营地共有多少人!”Tidy就要马上开始计算这一段的总人数并汇报。但敌兵营地的人数经常变动,而Derek每次询问的段都不一样,所以Tidy不得不每次都一个一个营地的去数,很快就精疲力尽了,Derek对Tidy的计算速度越来越不满:"你个死肥仔,算得这么慢,我炒你鱿鱼!”Tidy想:“你自己来算算看,这可真是一项累人的工作!我恨不得你炒我鱿鱼呢!”无奈之下,Tidy只好打电话向计算机专家Windbreaker求救,Windbreaker说:“死肥仔,叫你平时做多点acm题和看多点算法书,现在尝到苦果了吧!”Tidy说:"我知错了。。。"但Windbreaker已经挂掉电话了。Tidy很苦恼,这么算他真的会崩溃的,聪明的读者,你能写个程序帮他完成这项工作吗?不过如果你的程序效率不够高的话,Tidy还是会受到Derek的责骂的.
Input
第一行一个整数T,表示有T组数据。
每组数据第一行一个正整数N(N<=50000),表示敌人有N个工兵营地,接下来有N个正整数,第i个正整数ai代表第i个工兵营地里开始时有ai个人(1<=ai<=50)。
接下来每行有一条命令,命令有4种形式:
(1) Add i j,i和j为正整数,表示第i个营地增加j个人(j不超过30)
(2)Sub i j ,i和j为正整数,表示第i个营地减少j个人(j不超过30);
(3)Query i j ,i和j为正整数,i<=j,表示询问第i到第j个营地的总人数;
(4)End 表示结束,这条命令在每组数据最后出现;
每组数据最多有40000条命令
每组数据第一行一个正整数N(N<=50000),表示敌人有N个工兵营地,接下来有N个正整数,第i个正整数ai代表第i个工兵营地里开始时有ai个人(1<=ai<=50)。
接下来每行有一条命令,命令有4种形式:
(1) Add i j,i和j为正整数,表示第i个营地增加j个人(j不超过30)
(2)Sub i j ,i和j为正整数,表示第i个营地减少j个人(j不超过30);
(3)Query i j ,i和j为正整数,i<=j,表示询问第i到第j个营地的总人数;
(4)End 表示结束,这条命令在每组数据最后出现;
每组数据最多有40000条命令
Output
对第i组数据,首先输出“Case i:”和回车,
对于每个Query询问,输出一个整数并回车,表示询问的段中的总人数,这个数保持在int以内。
对于每个Query询问,输出一个整数并回车,表示询问的段中的总人数,这个数保持在int以内。
Sample Input
1 10 1 2 3 4 5 6 7 8 9 10 Query 1 3 Add 3 6 Query 2 7 Sub 10 2 Add 6 3 Query 3 10 End
Sample Output
Case 1: 6 33 59
这题在之前是用线段树做的,今天艾神讲分块,把艾神的分块做法贴一下
1 //2016.8.12 2 #include<iostream> 3 #include<stdio.h> 4 #include<algorithm> 5 #include<string.h> 6 #define kuai 230 7 using namespace std; 8 int arr[50005],n; 9 int sum[305]; 10 void add(int x,int y) 11 { 12 int belong=x/kuai; 13 sum[belong]+=y; 14 arr[x]+=y; 15 return; 16 } 17 int query(int x,int y) 18 { 19 int l=0,r=kuai-1,ans=0; 20 for (int i=0;i<kuai;i++,l+=kuai,r+=kuai) 21 { 22 int L,R; 23 L=max(l,x); 24 R=min(r,y); 25 if (L>R) continue; 26 if (L==l && R==r) 27 ans+=sum[i]; 28 else 29 { 30 for (int j=L;j<=R;j++) 31 ans+=arr[j]; 32 } 33 } 34 return ans; 35 } 36 int main() 37 { 38 int t; 39 cin>>t; 40 for (int cas=1;cas<=t;cas++) 41 { 42 cin>>n; 43 for (int i=1;i<=n;i++) 44 scanf("%d",&arr[i]); 45 memset(sum,0,sizeof(sum)); 46 for (int i=1;i<=n;i++) 47 { 48 int belong=i/230; 49 sum[belong]+=arr[i]; 50 } 51 char ch[10]; 52 printf("Case %d:\n",cas); 53 scanf("%s",ch); 54 while (ch[0]!='E') 55 { 56 int x,y; 57 scanf("%d%d",&x,&y); 58 if (ch[0]=='A') 59 add(x,y); 60 else 61 if (ch[0]=='S') 62 add(x,-y); 63 else 64 printf("%d\n",query(x,y)); 65 scanf("%s",ch); 66 } 67 } 68 }
线段树做法。
1 //2016-05-13 2 #include<iostream> 3 #include<string> 4 #include<cstdio> 5 #include<cstring> 6 #include<algorithm> 7 using namespace std; 8 9 struct Node{ 10 int l, r, sum; 11 }A[500050]; 12 13 void Pushup(int root) 14 { 15 A[root].sum = A[root<<1].sum + A[root<<1|1].sum; 16 return ; 17 } 18 19 void Build(int l, int r, int root) 20 { 21 A[root].l = l; 22 A[root].r = r; 23 if(l == r) 24 { 25 scanf("%d", &A[root].sum); 26 return; 27 } 28 int mid = (l + r)>>1; 29 Build(l, mid, root<<1); 30 Build(mid+1, r, root<<1|1); 31 Pushup(root); 32 return ; 33 } 34 35 void update(int l, int r, int root , int k) 36 { 37 if(l == A[root].l && r == A[root].r) 38 { 39 A[root].sum += k; 40 return ; 41 } 42 int mid = (A[root].l + A[root].r) >> 1; 43 if(r <= mid) 44 update(l, r, root<<1, k); 45 else if(l > mid) 46 update(l, r, root<<1|1, k); 47 else 48 { 49 update(l, mid, root<<1, k); 50 update(mid+1, r, root<<1|1, k); 51 } 52 Pushup(root); 53 return ; 54 } 55 56 int Query(int l, int r, int root) 57 { 58 if(l == A[root].l && r == A[root].r) 59 return A[root].sum; 60 int mid = (A[root].l + A[root].r) >> 1; 61 int ans = 0; 62 if(r <= mid) 63 ans += Query(l, r, root<<1); 64 else if(l > mid) 65 ans += Query(l, r, root<<1|1); 66 else 67 ans += Query(l, mid, root<<1) + Query(mid+1, r, root<<1|1); 68 return ans; 69 } 70 71 int main () 72 { 73 int T, cas, N; 74 int l, k; 75 string OP, A = "Add", S = "Sub", Q = "Query", E = "End"; 76 cas = 0; 77 scanf("%d", &T); 78 while(T--) 79 { 80 scanf("%d", &N); 81 Build(1, N, 1); 82 printf("Case %d:\n", ++cas); 83 while(cin>>OP) 84 { 85 if(OP == A) 86 { 87 scanf("%d %d", &l, &k); 88 update(l, l, 1, k); 89 } 90 else if(OP == S) 91 { 92 scanf("%d %d", &l, &k); 93 update(l, l, 1, -k); 94 } 95 else if(OP == Q) 96 { 97 scanf("%d %d", &l, &k); 98 printf("%d\n", Query(l, k, 1)); 99 } 100 else if(OP == E) 101 break; 102 } 103 } 104 return 0; 105 }
树状数组做法。
1 //2017-05-17 2 #include <cstdio> 3 #include <cstring> 4 #include <iostream> 5 #include <algorithm> 6 7 using namespace std; 8 9 const int N = 50005; 10 int e[N], n; 11 12 int lowbit(int x) 13 { 14 return x&-x; 15 } 16 17 void add(int pos, int w) 18 { 19 while(pos <= n){ 20 e[pos] += w; 21 pos += lowbit(pos); 22 } 23 } 24 25 int sum(int pos) 26 { 27 int ans = 0; 28 while(pos > 0){ 29 ans += e[pos]; 30 pos -= lowbit(pos); 31 } 32 return ans; 33 } 34 35 int main() 36 { 37 int T, a; 38 scanf("%d", &T); 39 for(int kase = 1; kase <= T; kase++){ 40 scanf("%d", &n); 41 memset(e, 0, sizeof(e)); 42 for(int i = 1; i <= n; i++) 43 { 44 scanf("%d", &a); 45 add(i, a); 46 } 47 char op[10]; 48 int x, y; 49 printf("Case %d:\n", kase); 50 while(scanf("%s", op)){ 51 if(op[0] == 'Q'){ 52 scanf("%d%d", &x, &y); 53 printf("%d\n", sum(y)-sum(x-1)); 54 }else if(op[0] == 'A'){ 55 scanf("%d%d", &x, &y); 56 add(x, y); 57 }else if(op[0] == 'S'){ 58 scanf("%d%d", &x, &y); 59 add(x, -y); 60 }else if(op[0] == 'E') 61 break; 62 } 63 } 64 65 return 0; 66 }