bzoj 4813: [Cqoi2017]小Q的棋盘 [树形背包dp]

4813: [Cqoi2017]小Q的棋盘

题意:


某poj弱化版?树形背包

据说还可以贪心...

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
using namespace std;
typedef long long ll;
const int N = 105;
inline int read() {
    char c=getchar(); int x=0,f=1;
    while(c<'0' || c>'9') {if(c=='-')f=-1; c=getchar();}
    while(c>='0' && c<='9') {x=x*10+c-'0'; c=getchar();}
    return x*f;
}

int n, m;
struct edge{int v, ne;} e[N<<1];
int cnt, h[N];
inline void ins(int u, int v) {
    e[++cnt] = (edge){v, h[u]}; h[u] = cnt;
    e[++cnt] = (edge){u, h[v]}; h[v] = cnt;
}
int f[N][N][2];
void dfs(int u, int fa) {
    for(int i=0; i<=m; i++) f[u][i][0] = f[u][i][1] = 1;
    for(int i=h[u]; i; i=e[i].ne) {
        int v = e[i].v;
        if(v == fa) continue;
        dfs(v, u);
        for(int j=m; j>=0; j--)
            for(int k=1; k<=j; k++) {
                if(k >= 1) f[u][j][0] = max(f[u][j][0], f[u][j-k][1] + f[v][k-1][0]);
                if(k >= 2) {
                    f[u][j][1] = max(f[u][j][1], f[u][j-k][1] + f[v][k-2][1]);
                    f[u][j][0] = max(f[u][j][0], f[u][j-k][0] + f[v][k-2][1]);
                }
            }
    }
}

int main() {
    freopen("in", "r", stdin);
    n=read(); m=read();
    for(int i=1; i<n; i++) ins(read()+1, read()+1);
    dfs(1, 0);
    printf("%d\n", f[1][m][0]);
}

转载于:https://www.cnblogs.com/candy99/p/6761674.html

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
题目描述 有一个 $n$ 个点的棋盘,每个点上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字和为 $S$。定义一个点 $(x,y)$ 的权值为 $a_x+a_y$,求所有满足条件的路径中,所有点的权值和的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个点的数字。 输出格式 输出一个整数,表示所有满足条件的路径中,所有点的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (树形dp) $O(n^3)$ 我们可以先将所有点的权值求出来,然后将其看作是一个有权值的图,问题就转化为了在这个图中求从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有点的权值和的最小值。 我们可以使用树形dp来解决这个问题,具体来说,我们可以将这个图看作是一棵树,每个点的父节点是它的前驱或者后继,然后我们从根节点开始,依次向下遍历,对于每个节点,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有点的权值和的最小值,然后再将这个值加上当前节点的权值,就可以得到从根节点到当前节点的路径中,所有点的权值和的最小值。 时间复杂度 树形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有点的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示点 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值