Codeforces1151E,F | 553Div2 | 瞎讲报告

传送链接

E. Number of Components

  • 当时思博了。。一直在想对于\([1,r]\)的联通块和\([1,l-1]\)的联通块推到\([l,r]\)的联通块...我真的是傻了。。这题明明很水啊..换做以前肯定是可以做出来的!(flag*1)
    由于是一条链,那么我们考虑就算一个联通块中的最小节点为\(i\)对答案所产生的贡献...不就是满足\(i\)而不满足\(i-1\)\([l,r]\)区间有多少个吗!(我真的好菜啊!这题明明很水!

F. Sonya and Informatics

  • 神仙吧这题!一直以为自己是懂矩阵优化DP的。。现在发现自己知道的东西真的只是一点皮毛而已呢!woc。。瞬间不想继续颓废下去了

    一看这个数据范围\(n \leq 100,k \leq 10^9\)

    矩阵乘法!

    我们先考虑一个肥肠暴力的\(dp\)再考虑矩阵乘法优化 因为如果你要搞出一个非下降的那么一定是\(0\)在前面而\(1\)在后面的
    设一共有\(zero\)\(0\),\(one\)\(1\)
    那么我们就可以设\(dp[i][j]\)表示第\(i\)次操作使得前面\(zero\)个数中有\(j\)\(0\)的方案数
    最后所求即为\[\frac{dp[k][zero]}{(n*(n-1)/2)^{k}}\]
    转移应该也还蛮好懂的趴!
    \(dp[i][j]\) 可以转移到\(dp[i+1][j-1],dp[i+1][[j],dp[i+1][j+1]\)
    那菜鸡博主就举个例子

    \(dp[i][j] \Rightarrow dp[i+1][j]\) 一步操作,前面\(zero\)里面\(0\)的个数并没有改变,那么一定是下面的请况

    • \(1\)\(1\)交换了 方案数为\(one*(one-1)/2\)
    • \(0\)\(0\)交换了 方案数为\(zero*(zero-1)/2\)
    • 前面\(zero\)个数中\(0\)\(1\)交换了 方案数为\(j*(zero-j)\)
    • 后面的数\(0\)\(1\)交换了 方案数为\((zero-j)*( one-(zero-j) )\)

    转移即为

    \[dp[i+1][j]=dp[i][j]*(one*(one-1)/2+zero*(zero-1)/2+j*(zero-j)+(zero-j)*(one-(zero-j)))\]

    但是这个复杂度是\(O(nk)\)哒 显然过不了嘛

    矩阵优化也很容易转换(好吧。对于我这只菜鸡来说并不QwQ.

    事实上,这题是将转移的系数进行了优化(不知道这么说对不对。。)

    好像准确地来说应该是概率

    即对于一个矩阵\(A[i][j]\) 表示从前\(zero\)个数中\(0\)的个数由\(i\)变成\(j\)的方案数

    我们可以直接预处理出\(A[i][i],A[i][i+1],A[i][i-1]\) 这是转移一次的

    转移\(k\)次 即将\(A\)这个矩阵乘个\(k\)遍就行了 矩阵快速幂用一下即可.

​ 贴个代码趴!

#include<bits/stdc++.h>
#define fr(i,x,y) for(int i=x;i<=y;++i)
#define rf(i,x,y) for(int i=x;i>=y;--i)
#define ll long long
using namespace std;
const int N=110,mod=1e9+7;
struct data{
    ll a[N][N];
}qx;
ll qwq,inv;
int n,k,b[N];

void Add(ll &x,ll y){
    x=(x+y)%mod;
}

void Mul(ll &x,ll y){
    x=(x*y)%mod;
}

ll add(ll x,ll y){
    return (x+y)%mod;
}

ll mul(ll x,ll y){
    return x*y%mod;
}

ll q_pow(ll x,int y){
    ll ans=1;
    for(;y;y>>=1){
        if(y&1) Mul(ans,x);
        Mul(x,x);
    }
    return ans;
}

data cal(data A,data B){
    data C;
    fr(i,0,n) fr(j,0,n){
        C.a[i][j]=0;
        fr(k,0,n) Add(C.a[i][j],mul(A.a[i][k],B.a[k][j]));
    }
    return C;
}

data ksm(data A,int y){
    data B;
    fr(i,0,n) fr(j,0,n) B.a[i][j]=(i==j);
    for(;y;y>>=1){
        if(y&1) B=cal(A,B);
        A=cal(A,A);
    }
    return B;
}

ll cal(ll x){
    return mul(mul(x,x-1),qwq);
}

int main(){
    scanf("%d%d",&n,&k);
    qwq=q_pow(2,mod-2),inv=q_pow(q_pow(cal(n),mod-2),k);
    int zero=0,one=0;
    fr(i,1,n){
        scanf("%d",&b[i]);
        if(b[i]) one++;
         else zero++;
    }
    int nw=0;
    fr(i,1,zero) if(!b[i]) nw++;
    data gg;
    fr(i,0,zero){
        if(n-zero-zero+i<0) continue;
        gg.a[i][i]=add(add(add(cal(zero),cal(one)),mul(i,zero-i)),mul(zero-i,one-zero+i));
        gg.a[i][i+1]=mul(zero-i,zero-i);
        if(i) gg.a[i][i-1]=mul(i,one-zero+i);
    }
    // fr(i,0,zero) fr(j,0,zero){
    //  printf("a[%d][%d]=%lld\n",i,j,gg.a[i][j]);
    // }
    gg=ksm(gg,k);
    ll ans=mul(gg.a[nw][zero],inv);
    cout<<ans<<endl;
    return 0;
}

转载于:https://www.cnblogs.com/lowbigpei/p/10735174.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值