2014 ACM-ICPC Vietnam National Second Round

B. Sum

time limit per test
2 seconds
memory limit per test
256 megabytes
input
standard input
output
standard output

Write a program to compute the following sum S given a positive integer n:

, where  is the largest integer not greater than x.

Input

The input file consists of several datasets. The first line of the input file contains the number of datasets which is a positive integer and is not greater than 30. The following lines describe the datasets.

Each dataset contains a positive integer n (n ≤ 1012) written on a separate line.

Output

For each dataset, write in one line the remainder of the computed sum S divided by 106.

Sample test(s)
input
2
1
5
output
1
10

思路:发现[x/i]的不同的值很少, 于是可以分段进行。

D. Treasure Box
time limit per test
2 seconds
memory limit per test
256 megabytes
input
standard input
output
standard output

Your team was exploring an ancient city. Suddenly you found an old scroll with 2 integer numbers N and K, which encrypts the secret code to open a treasure box. Considering a transformation on an integer X described as follows:

X = X + Xmod 100,

the secret code can be obtained by applying the above-described transformation K times successively to N.

Input

The input file consists of several datasets. The first line of the input file contains the number of datasets which is a positive integer and is not greater than 500.

Each dataset has two space-separated positive integers N and K (1 ≤ N ≤ 109, 1 ≤ K ≤ 109) written on a single line.

Output

For each dataset, write on a single line the secret number decrypted from N and K.

Sample test(s)
input
2
31102014 2
10101 10
output
31102056
10324

思路: X MOD 100 存在循环节。

 

E. ACM
time limit per test
9 seconds
memory limit per test
512 megabytes
input
standard input
output
standard output

An IT company puts out an advertisement to hire staff for a newly established office. They received n applications and organized an interview to select the best ones. They want to recruit candidates with both high level of expertise and good teamwork skill. Each candidate is assigned an ACM (Ability Coefficient of Multi-collectives) score that represents how the candidate meets the company’s internal selection criteria. Initially, everyone’s ACM score is 1.

Candidates are arranged into a round table of n seats, indexed from 1 to n. The first person sits next to the second person and the nthperson. For each interview question, candidates with indices from L and R form a group and register their collective answer to the system. If L ≤ R, the group consists of candidates at indices L, L + 1, L + 2, ..., R. If L > R, the group consists of candidates at indicesL, L + 1, ..., N, 1, ..., R. Depending on the answer, the ACM score of each group member is either multipled by X or divided by Y (in the later case, it is guaranteed that all ACM scores of the group are divisible by Y).

During the interview, the company may also request the system to output the product of the ACM scores of a group. This product could be a large number, so the system has to only output the value at modulo P. In summary, the system has to handle the following three types of queries:

  • L R P – compute the product of the ACM scores of all candidates from L to R, modulo P
  • L R X – the ACM score of each candidate from L to R is multiplied by X
  • L R Y – the ACM score of each candidate from L to R is divided by Y

For every query, we have 1 ≤ L, R ≤ N1 ≤ P ≤ 109 + 7, 1 ≤ X, Y ≤ 150.

Your task is to implement the system and output the computed products for every query of type 0.

Input

The input file consists of several datasets. The first line of the input file contains the number of datasets which is a positive integer and is not greater than 20. The following lines describe the datasets.

Each dataset comes in the following format:

  • The first line contains 2 integers n, m where n is the number of candidates and m is the number of queries to be processed(1 ≤ n, m ≤ 50000).
  • In the next m lines, the ith line contains the ith query.
Output

For each dataset, write out the corresponding outputs for queries of type 0 where each query output is on a separate line.

思路: 建立35课线段树,没课更新一个质因数的次幂。

#include <bits/stdc++.h>
#define LL long long

using namespace std;

struct node
{
    int l,r;
    LL sum,push;
};

const int X=150;
const int N=50010;

LL prime[35];
int pr;
node tree[35][N*4];

void init()
{
    pr=0;
    for (int i=2;i<=X;i++)
    {
        bool flag=true;
        for (int j=2;j<i;j++) if (i%j==0) flag=false;
        if (flag)
            prime[pr++]=i;
    }
}

void build(int idx, int t, int l, int r)
{
    tree[idx][t].l=l; tree[idx][t].r=r;
    tree[idx][t].sum=0; tree[idx][t].push=0;
    if (l==r) return;
    int mid=(l+r)/2;
    build(idx,t*2,l,mid);
    build(idx,t*2+1,mid+1,r);
}

void pushdown(int idx,int t)
{
    if (tree[idx][t].l!=tree[idx][t].r)
    {
        tree[idx][t*2].push+=tree[idx][t].push;
        tree[idx][t*2+1].push+=tree[idx][t].push;
        tree[idx][t*2].sum+=tree[idx][t].push*(tree[idx][t*2].r-tree[idx][t*2].l+1);
        tree[idx][t*2+1].sum+=tree[idx][t].push*(tree[idx][t*2+1].r-tree[idx][t*2+1].l+1);

        tree[idx][t].push=0;
    }
}

LL query(int idx, int t, int l, int r)
{
    if (l<=tree[idx][t].l&&tree[idx][t].r<=r)
    {
        return tree[idx][t].sum;
    }
    int mid=(tree[idx][t].l+tree[idx][t].r)/2;
    pushdown(idx,t);
    if (r<=mid)
        return query(idx,t*2,l,r);
    else
    if (l>mid)
        return query(idx,t*2+1,l,r);
    else
        return query(idx,t*2,l,mid)+query(idx,t*2+1,mid+1,r);
}

void update(int idx, int t, int l, int r, int x)
{
    if (l<=tree[idx][t].l&&tree[idx][t].r<=r)
    {
        tree[idx][t].push+=x;
        tree[idx][t].sum+=x*(tree[idx][t].r-tree[idx][t].l+1);
        return;
    }
    int mid=(tree[idx][t].l+tree[idx][t].r)/2;
    pushdown(idx,t);
    if (l<=mid)
        update(idx,t*2,l,r,x);
    if (r>mid)
        update(idx,t*2+1,l,r,x);

    tree[idx][t].sum=tree[idx][t*2].sum+tree[idx][t*2+1].sum;
}

LL multi(LL x, LL k,LL p)
{
    LL ans=1;
    x=x%p;
    while(k>0)
    {
        if(k%2==1) ans=(ans*x)%p;
        k=k/2;
        x=(x*x)%p;
    }
    return ans;
}

int main()
{
    int T,n,m,c,l,r;
    LL p;
    scanf("%d",&T);
    init();

    while(T--)
    {
        scanf("%d%d",&n,&m);
        for (int i=0;i<pr;i++) build(i,1,1,n);

        while(m--)
        {
            scanf("%d%d%d%I64d",&c,&l,&r,&p);
            if (c==0)
            {
                LL sum=1;
                for (int i=0;i<pr;i++)
                {
                    LL x=0;
                    if (l<=r) x=query(i,1,l,r); else x=query(i,1,l,n)+query(i,1,1,r);
                    sum=(sum*multi(prime[i],(LL)x,p))%p;
                }
                cout<<sum<<endl;
            }
            if (c==1)
            {
                for (int i=0;i<pr;i++) if (p%prime[i]==0)
                {
                    int x=0;
                    while(p%prime[i]==0) {x++; p=p/prime[i];}
                    if (l<=r) update(i,1,l,r,x); else {update(i,1,l,n,x); update(i,1,1,r,x);}
                }
            }
            if (c==2)
            {
                for (int i=0;i<pr;i++) if (p%prime[i]==0)
                {
                    int x=0;
                    while(p%prime[i]==0) {x++; p=p/prime[i];}
                    if (l<=r) update(i,1,l,r,-x); else {update(i,1,l,n,-x); update(i,1,1,r,-x);}
                }
            }
        }
    }
    return 0;
}

/*
2
6 5
0 1 5 1000000007
1 2 4 15
0 1 6 8704173
2 2 3 3
0 1 6 1000000007
6 6
1 1 4 20
1 2 6 15
0 1 6 9704331
2 3 6 5
0 1 4 1000000007
0 1 5 1000000007
*/

  

转载于:https://www.cnblogs.com/wzb-hust/p/4655627.html

以下是对提供的参考资料的总结,按照要求结构化多个要点分条输出: 4G/5G无线网络优化与网规案例分析: NSA站点下终端掉4G问题:部分用户反馈NSA终端频繁掉4G,主要因终端主动发起SCGfail导致。分析显示,在信号较好的环境下,终端可能因节能、过热保护等原因主动释放连接。解决方案建议终端侧进行分析处理,尝试关闭节电开关等。 RSSI算法识别天馈遮挡:通过计算RSSI平均值及差值识别天馈遮挡,差值大于3dB则认定有遮挡。不同设备分组规则不同,如64T和32T。此方法可有效帮助现场人员识别因环境变化引起的网络问题。 5G 160M组网小区CA不生效:某5G站点开启100M+60M CA功能后,测试发现UE无法正常使用CA功能。问题原因在于CA频点集标识配置错误,修正后测试正常。 5G网络优化与策略: CCE映射方式优化:针对诺基亚站点覆盖农村区域,通过优化CCE资源映射方式(交织、非交织),提升RRC连接建立成功率和无线接通率。非交织方式相比交织方式有显著提升。 5G AAU两扇区组网:与三扇区组网相比,AAU两扇区组网在RSRP、SINR、下载速率和上传速率上表现不同,需根据具体场景选择适合的组网方式。 5G语音解决方案:包括沿用4G语音解决方案、EPS Fallback方案和VoNR方案。不同方案适用于不同的5G组网策略,如NSA和SA,并影响语音连续性和网络覆盖。 4G网络优化与资源利用: 4G室分设备利旧:面对4G网络投资压减与资源需求矛盾,提出利旧多维度调优策略,包括资源整合、统筹调配既有资源,以满足新增需求和提质增效。 宏站RRU设备1托N射灯:针对5G深度覆盖需求,研究使用宏站AAU结合1托N射灯方案,快速便捷地开通5G站点,提升深度覆盖能力。 基站与流程管理: 爱立信LTE基站邻区添加流程:未提供具体内容,但通常涉及邻区规划、参数配置、测试验证等步骤,以确保基站间顺畅切换和覆盖连续性。 网络规划与策略: 新高铁跨海大桥覆盖方案试点:虽未提供详细内容,但可推测涉及高铁跨海大桥区域的4G/5G网络覆盖规划,需考虑信号穿透、移动性管理、网络容量等因素。 总结: 提供的参考资料涵盖了4G/5G无线网络优化、网规案例分析、网络优化策略、资源利用、基站管理等多个方面。 通过具体案例分析,展示了无线网络优化中的常见问题及解决方案,如NSA终端掉4G、RSSI识别天馈遮挡、CA不生效等。 强调了5G网络优化与策略的重要性,包括CCE映射方式优化、5G语音解决方案、AAU扇区组网选择等。 提出了4G网络优化与资源利用的策略,如室分设备利旧、宏站RRU设备1托N射灯等。 基站与流程管理方面,提到了爱立信LTE基站邻区添加流程,但未给出具体细节。 新高铁跨海大桥覆盖方案试点展示了特殊场景下的网络规划需求。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值