P3868 [TJOI2009]猜数字(中国剩余定理)

题目描述

现有两组数字,每组k个,第一组中的数字分别为:a1,a2,...,ak表示,第二组中的数字分别用b1,b2,...,bk表示。其中第二组中的数字是两两互素的。求最小的非负整数n,满足对于任意的i,n - ai能被bi整除。

输入输出格式

输入格式:

输入数据的第一行是一个整数k,(1 ≤ k ≤ 10)。接下来有两行,第一行是:a1,a2,...,ak,第二行是b1,b2,...,bk

输出格式:

输出所求的整数n。

输入输出样例

输入样例#1: 复制
3
1 2 3
2 3 5
输出样例#1: 复制
23

说明

所有数据中,第一组数字的绝对值不超过10^9(可能为负数),第二组数字均为不超过6000的正整数,且第二组里所有数的乘积不超过10^18

每个测试点时限1秒

注意:对于C/C++语言,对64位整型数应声明为long long,如使用scanf, printf函数(以及fscanf, fprintf等),应采用%lld标识符。

 

 

#include<iostream>
#include<cstring>
#include<string>
#include<cmath>
#include<stdio.h>
using namespace std;
typedef long long ll;
ll a[20],b[20],n;
void exgcd(ll a,ll b,ll &x,ll &y)
{
    if(b==0)
        x=1,y=0;
    else{
        exgcd(b,a%b,y,x);
        y-=a/b*x;
    }
}
ll quickmul(ll a,ll b,ll mod)
{
    ll ans=0;
    while(b){
        if(b&1)ans=(ans+a)%mod;
        a=(a+a)%mod;
        b>>=1;
    }
    return ans;
}

ll solve()
{
    ll M=1;
    for(int i=1;i<=n;i++){
        M*=b[i];
    }
    ll ans=0;
    for(int i=1;i<=n;i++){
        ll x,y;
        exgcd(M/b[i],b[i],x,y); //M/b[i]*x==1(mod b[i])的解x
        x=(x%b[i]+b[i])%b[i];//化为最小正整数解
        ans=(ans+quickmul(quickmul(M/b[i],x,M),a[i],M))%M;//运用快速乘,不然会爆
    }
    return ans;
}
int main()
{
    scanf("%lld",&n);
    for(int i=1;i<=n;i++)scanf("%lld",&a[i]);
    for(int i=1;i<=n;i++)scanf("%lld",&b[i]);
    for(int i=1;i<=n;i++)a[i]=(a[i]%b[i]+b[i])%b[i];
    printf("%lld\n",solve());
    return 0;
}

 

转载于:https://www.cnblogs.com/cherish-lin/p/11134599.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值