(十六)改良高斯消去法

 

 1 #encoding=utf-8
 2 import numpy as np
 3 # 输入数据
 4 # a用来记录x的系数
 5 a=[[0.0,2.0,3.0],[4.0,10000.0,7.0],[2.0,1.0,6.0]]
 6 # b用来记录 y
 7 b=[8.0,-3.0,5.0]
 8 # n用来记录方程的个数
 9 n=len(b)
10 # 定义x
11 x=[0.0 for p in range(n)]
12 #求上矩阵
13 for k in range(0,n-1):
14     for i in range(k+1,n):
15         # 寻找最大主元
16         # 设置最大主元默认值
17         p=k
18         # 将次元系数设为1比较主元大小,则只需将主元除以次元去绝对值便可取得缩放后的主元
19         big = abs(a[k][k]/a[k][k+1])
20         for ii in range(k+1,n):
21         # 求缩放后的次元
22             dummy=abs(a[ii][k]/a[ii][k+1])
23         #比较主元大小,取最大主元的下标
24             if dummy>big :
25                 big = dummy
26                 p=ii
27         #  交换主元
28         if(p!=k):
29             for jj in range(k,n):
30                 dummy=a[p][jj]
31                 a[p][jj]=a[k][jj]
32                 a[k][jj]=dummy
33             dummy=b[p]
34             b[p]=b[k]
35             b[k]=dummy
36 
37 
38         # k表示两行元素之间的倍数
39         f=a[i][k]/a[k][k]
40         #
41         for j in range(k,n):
42             a[i][j]=a[i][j]-f*a[k][j]
43         b[i]=b[i]-f*b[k]
44 #求x的值
45 x[n-1]=b[n-1]/a[n-1][n-1]
46 # x.insert(-1,b[n-1]/a[n-1][n-1])
47 for i in range(n-2,-1,-1):
48     sum=b[i]
49     for j in range(i+1,n):
50         sum=sum-a[i][j]*x[j]
51     xi=sum/a[i][i]
52     x[i]=xi
53     # x.insert(-1,xi)
54 for xi in x:
55     print xi;

 

转载于:https://www.cnblogs.com/the-wang/p/8021586.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值