2018 杭电多校1 - Chiaki Sequence Revisited

题目链接

Problem Description
Chiaki is interested in an infinite sequence $$$a_1,a_2,a_3,...,$$$ which is defined as follows:
$$$a_n=
\begin{cases}
1, & \text{$$$n=1,2$$$} \\
a_{n-a_{n-1}}+a_{n-1-a_{n-2}} & \text{$$$n\ge 3$$$}
\end{cases}$$$
Chiaki would like to know the sum of the first $$$n$$$ terms of the sequence, i.e. $$$\sum_{i=1}^{n}a_i$$$. As this number may be very large, Chiaki is only interested in its remainder modulo $$$(10^9+7)$$$.
Input
There are multiple test cases. The first line of input contains an integer $$$T$$$ $$$(1≤T≤10^5)$$$, indicating the number of test cases. For each test case: The first line contains an integer $$$n$$$ $$$(1≤n≤10^{18})$$$.
Output
For each test case, output an integer denoting the answer.
Sample Input
10
1
2
3
4
5
6
7
8
9
10
Sample Output
1
2
4
6
9
13
17
21
26
32

学习了这篇大佬的博客

题意
求数列的前n项和

 

思路

打表+分析找规律:

规律1:数量和的规律

首先观察$$$A$$$,前几项为1, 2, 2, 3, 4, 4, 4, 5, 6, 6, ...,发现数列$$$A$$$其实是1,2,3,4,5,...依次出现,只是个数在发生变化。

定义$$$c_n$$$为$$$n$$$在$$$A$$$中出现的次数,前几项为1, 2, 1, 3, 1, 2, 1, 4, ...,发现奇数项$$$c_{2k+1}=1$$$,偶数项$$$c_{2k}=c_k+1$$$。

定义$$$s_n$$$为$$$c_n$$$的前$$$n$$$项和,则有如下规律:

$$$s_{2*k}$$$=$$$(c_1+c_3+...+c_{2k-1})+(c_2+c_4+...+c_{2*k})$$$=$$$n+(c_1+c_2+...+c_k)+n$$$=$$$2n+s_k$$$,

$$$s_{2*k+1}$$$=$$$(c_1+c_3+...+c_{2*k+1}+(c_2+c_4+...+c_{2*k}))$$$=$$$n+1+(c_1+c_2+c_k)+n$$$=$$$2n+1+s_k$$$

综上可得$$$s_n$$$=$$$s_{\lfloor \frac{n}{2}\rfloor}+n$$$

$$$s_n$$$的含义是,1~n在A中总共出现了多少次

 

规律2:单个n出现次数的规律

观察$$$c_n$$$发现,

1,    3,    5, ..., 1+2*k 出现1次

2,    6,  10, ..., 2+4*k 出现2次

4,  12,  20 ,..., 4+8*k 出现3次

n的出现次数符合这样的规律:从$$$2^t$$$开始,公差为$$$2^{t+1}$$$的数列中的每个数在A中出现$$$t+1$$$次。

结论1中,我们知道了1~n在A中总共出现了多少次,那么在结论2中,我们还可以对它们求和:把1~n重新组合为若干个等差数列,每个等差数列的首项一定是$$$2^t$$$,而尾项则是不超过n的最大$$$2^t+2^{t+1}*k$$$;通过遍历$$$2^t$$$不大于n的所有$$$t$$$,可以快速的求出所有1~n的和。

有了这些准备,求A当前n项和就可以这样:由于前n项并不一定包含了全部的1~$$$a_n$$$,只能直接求全部的1~$$$a_{n}-1$$$的和,再求有几个的$$$a_n$$$。

但是$$$a_n$$$是未知的,为了求$$$a_n$$$,可以利用规律1,二分查找一个x,使得$$$s_{x-1}<n<s_x$$$,那么也就意味着,A的第$$$s_{x-1}+1$$$~$$$s_{x}$$$项都是x,那么$$$a_n$$$就是x;另一方面,A的前n项中,$$$a_n$$$的数量就是n-$$$s_{x-1}$$$。

 

注意

打表+分析发现,$$$n$$$和$$$s_n$$$大约为1:2的关系,也就是说在二分寻找$$$x$$$的时候,大约有2(x-1)<n<2x的关系,也就是说,搜索的范围缩小到了n/2的附近。具体长度大概估计就可以了。

 

代码
#include<stdio.h>
/*
 * HDU6304 Chiaki Sequence Revisited 数学题学习
 * an为原数列从第二项开始,前几项为:1,2,2,3,4,4,4,5,6,6,...
 * 
 * PART 1
 * n的数量和的规律
 * 记cn为n在{ai}中出现次数,前几项为:1,2,1,3,1,2,1,4,...
 * 打表+分析发现,c(2*k+1)=1, c(2*k)=c(k)+1
 * 设sn为cn前n项和
 * s(2*n)=n项奇数项+n项偶数项=c(1)+c(3)+...+c(2*n-1)+c(2)+c(4)+...+c(2*n)=n+c(1)+...c(n)+n=s(n)+2*n
 * 同理,s(2*n+1)=(n+1)项奇数项+n项偶数项=n+1+s(n)+n=s(n)+2*n+1
 * 综上,s(n)=s(n/2)+n;
 * 于是可以在log(N)内求出s(n)
 * s(n)的含义为1~n在{ai}中总共有多少个,也就是在{ai}中,最后一个ai=n的编号i=s(n)
 * 为了求出第i个ai,可以通过二分查找,找到s(j)<i<s(k),那么ai就是k
 * 于是,可以用log(N)*log(N)求出第i个ai
 * 
 * 
 * PART 2
 * n出现次数的规律
 * 打表+分析发现
 * 1,    3,    5, ..., 1+2*k 出现1次
 * 2,    6,  10, ..., 2+4*k 出现2次
 * 4,  12,  20 ,..., 4+8*k 出现3次
 * 规律:2^t的所有倍数出现t+1次
 * 于是对于任何一个n,通过遍历t,利用等差数列和x出现次数的方法,在log(N)内求出小于n的所有ai的和
 * 
 * 
 * PART 3
 * {ai}前n项求和过程分为:
 * log(N)*log(N)求出an
 * log(N)求出小于an的所有ai的和
 * log(N)求出最后一个ax=an-1的编号,那么所有an的和为an*(n-ax)
 * 
 */

 typedef long long ll;
const ll  mod = 1000000007;

//log(N)求cn前n项和,也就是求不大于an的一共有几项
ll sum(ll n)
{
    if (n <= 1)return  n;
    ll res = (sum(n >> 1) + n);//注意这里不能取模
    return res;
}

//求sn大于等于key的最小an
ll bins(ll l, ll r,ll key)
{
    ll mid;
    while (l+1<r)
    {
        mid = (l + r) >> 1;
        if (sum(mid) >= key)
            r = mid;
        else l = mid;
    }
    return r;
}

int main()
{
    int kase;
    ll n;
    scanf("%d", &kase);
    while (kase--)
    {
        scanf("%lld", &n);
        
        n--;//我们考虑的an数列是从原数列的第二项开始的,相应的个数要-1
        /*
         * 打表+分析发现,i和sum(i)大约为1:2的关系
         * 也就是说an和n的关系大约为1:2
         * 缩小搜索区间到n/2附近
         */
        ll an = bins((n>>1)-100, (n>>1)+100, n);
        ll ans = 1;//原数列的第一个1
        
        for(ll wide=2,base=1,t=1;base<an;base=wide,wide<<=1,t++)
        {
            //等差数列求和:base,base+wide,...base+k*wide 
            //求k为小于an的最大情况
            ll k = (an - base-1) >> t;//除wide等价于右移t位
            ll help = (k + 1)%mod;
            ll     temp = (((help*help)%mod)*(base%mod))%mod; 
            ans = (ans + ((t%mod)*temp)%mod) % mod;
        }
        //再加上前n个数里所有的an
        ans =     (ans + ((an%mod)*((n%mod +(mod- (sum(an - 1)%mod)))))%mod)%mod;
        printf("%lld\n", ans);
    }
}

 

转载于:https://www.cnblogs.com/tobyw/p/9378653.html

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值