Predictive Analytics for Business 3

Linear Regression

1. Problem Understanding:

  What type of decision do we need to make? 

  The answer of this quesion has to be an yes/no answer. 

  What type of information we need to make the decision?

  All the information we need to support the decision we need. Go specific.

  What kind of analysis we need to make?

  Go back to Predictive Analytics for Business 2 to see the category of analysis method.

2. 

3. The calculation of Correlation and R-square indicates whether the data fits the line.

4. Using google sheet or excel by using: slope(X, Y) and intercept (X, Y) to calculate the best fit learn regression line for the data set.

5. Using CORREL(X,Y) to calculate the correlation between the X and Y.  Using RSQ to calculate square-R value of the line.

6. Use Data Analysis function in the excel to generate the model for the dataset for mutiple variable regression.

7. The R-squared value will increase while there are more variables. So here we are using adjusted R-squared value to replace the original one.

8. Transforming categorical variables: Dummy variables:

  Expenditures = β 0 + β1 Avg_Income + β2 Pct_Under_18 + β3 midwest + β4 southeast + β5 west

  The value of region can only be 0 or one. 

9. Understanding the equation:

  Expenditures = -530 + 0.073 Avg_Income + 1406.36 Pct_Under_18 + 6.53 region

  0.073 means for Average income, 1 dollar more will cause 1 more dollar for expenditures.

  1406.36 means for every one more percent students whos is under 18. there are 14 dollar more in the expenditures.

10. You always create one less dummy variable than the number of categories to make sure that one category is represented by zero values for the dummy variables.

 

转载于:https://www.cnblogs.com/kingoscar/p/6060937.html

Practical Predictive Analytics English | 2017 | ISBN-10: 1785886185 | 576 pages | PDF/MOBI/EPUB (conv) | 14 Mb Key Features A unique book that focuses on developing practical skills to make informed business decisions using predictive analytics Apply the principles and techniques of predictive analytics to effectively interpret big data Solve real-world analytical problems with the help of practical case studies and real-world scenarios Book Description This is a go-to book for anyone interested in predicting actions of people, businesses, and more. With this book, you will learn the entire process of predictive analytics and modeling techniques to practically implement them. You'll get started with the basics of predictive analytics and its applications along with the installation and set up of the tools. Once you have completed the installation, get ready for an exciting journey to uncover answers to hidden questions. You will learn about entering the data (or should I say dirty data), cleaning the data, and apply modeling techniques to this data. When you have done the crucial bit and cleaned the data, we'll tell you stories from within and let you visit the future. "You" - the fortune teller now can predict the number of expected re-admissions in a hospital or even the place where a virus may hit next. Wouldn't it be great if you could predict the injury and insurance claim payments based on the characteristics of the insured's vehicle or predict load defaults? Are you going to acquire those 10k customers for your start-up? Build your own model and answer this crucial question yourselves in the later part of the book. The journey does not end here, and you will learn to present your results with fantastic visualizations to showcase your results to the world. By the end of this book, you'll have learned about, implemented, and mastered predictive analytic techniques. What you will learn Find out how predictive analytics work Identify, model, and prioritize the decisions you need to optimize Classify the right algorithm for your requirements Use and apply predictive analytics to research problems in healthcare Implement predictive analytics to retain and acquire your customers Use text mining to understand unstructured data
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值