【hdu 2544最短路】【Dijkstra算法模板题】

本文深入解析了Dijkstra算法,一种用于解决带正权值的有向或无向图上单源最短路径问题的经典算法。文章详细介绍了算法的适用场景、工作原理及实现步骤,并通过伪代码和AC代码示例,帮助读者理解并掌握Dijkstra算法的应用。
摘要由CSDN通过智能技术生成

Dijkstra算法

分析

Dijkstra算法适用于边权为正的情况。它可用于计算正权图上的单源最短路( Single-Source Shortest Paths, SSSP) , 即从单个源点出发, 到所有结点的最短路(这样最后返回你想要的那个节点对应的距离即可)。 该算法同时适用于有向图和无向图。
其伪代码如下:

清除所有点的标号
设d[0]=0, 其他d[i]=INF         //INF被定义为一个很大的数字
循环n次 {
在所有未标号结点中, 选出d值最小的结点x
给结点x标记
对于从x出发的所有边(x,y), 更新d[y] = min{d[y], d[x]+w(x,y)}        //w(x,y)是指边xy对应的权值
}

模板

可以根据上面的伪代码帮助理解

int Dijk()
{
    memset(vis, 0, sizeof(vis));
    memset(d, 0, sizeof(d));
    for(int i = 1; i <= N; i++)
        d[i] = ((i == 1) ? 0 : INF);        //注意这里INF一定要设置的很大         //这里的条件设置根据题意自行判断
    for(int i = 1; i <= N; i++)
    {
        int x, minn = INF;
        for(int j = 1; j <= N; j++)
        {
            if(!vis[j] && d[j] < minn)          //在所有未标号结点中, 选出d值最小的结点x
            {
                minn = d[j];
                x = j;
            }
        }
        vis[x] = 1;           //标记它
        for(int y = 1; y <= N; y++)
            d[y] = min(d[y], d[x] + route[x][y]);
    }
    return d[...];              //根据题意要求进行返回相应的值
}

以上内容参考自刘汝佳的《算法竞赛入门经典》

题目链接

AC代码

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int maxn = 100 + 10;
const int INF = 0x3f3f3f3f;
int N, M;
int a, b, c;
int route[maxn][maxn], d[maxn];
int vis[maxn];
int Dijk()
{
    memset(vis, 0, sizeof(vis));
    memset(d, 0, sizeof(d));
    for(int i = 1; i <= N; i++)
        d[i] = ((i == 1) ? 0 : INF);            //这里的条件设置根据题意自行判断
    for(int i = 1; i <= N; i++)
    {
        int x, minn = INF;
        for(int j = 1; j <= N; j++)
        {
            if(!vis[j] && d[j] < minn)          //在所有未标号结点中, 选出d值最小的结点x
            {
                minn = d[j];
                x = j;
            }
        }
        vis[x] = 1;           //标记它
        for(int y = 1; y <= N; y++)
            d[y] = min(d[y], d[x] + route[x][y]);
    }
    return d[N];
}
void init()
{
    for(int i = 1; i <= N; i++)
    {
        for(int j = i + 1; j <= N; j++)
            route[i][j] = route[j][i] = INF;
    }
}
int main()
{
//    freopen("input.txt", "r", stdin);
//    freopen("output.txt", "w", stdout);
    while(cin >> N >> M && N && M)
    {
        init();
        for(int i = 0; i < M; i++)
        {
            cin >> a >> b >> c;
            route[a][b] = route[b][a] = c;
        }
        int minn = Dijk();
        cout << minn << endl;
    }

}

转载于:https://www.cnblogs.com/KeepZ/p/11374360.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值