欢迎访问~原文出处——博客园-zhouzhendong
去博客园看该题解
题目传送门 - BZOJ1264
题意概括
给出两个长度为5*n的序列,每个序列中,有1~n各5个。
求其最长公共子序列长度。
题解
我们发现这题的序列特殊性是关键!
我们只需要知道每一种数字在某一个序列中的5个位置,然后对于普通的LCS问题,我们只有在a[i] = b[j]的时候才会+1。
那么我们可以维护一个树状数组,在a序列中,我们一个一个位置扫过去,每次通过树状数组维护的前缀最大值来更新,然后因为修改不多,所以维护最大值是可以的。
这样,修改logn,查询logn,可以承受了。
代码
#include <cstring>
#include <algorithm>
#include <cstdio>
#include <cmath>
#include <cstdlib>
#include <vector>
using namespace std;
const int N=20000+5,M=N*5;
int n,m,a[M],cnt[N],v[N][5];
int c[M],dp[M];
int lowbit(int x){
return x&-x;
}
int ask(int x){
int ans=0;
for (;x>0;x-=lowbit(x))
ans=max(ans,c[x]);
return ans;
}
void change(int x,int d){
for (;x<=m;x+=lowbit(x))
c[x]=max(c[x],d);
}
int main(){
scanf("%d",&n);
m=n*5;
for (int i=1;i<=m;i++)
scanf("%d",&a[i]);
memset(cnt,0,sizeof cnt);
for (int i=1,x;i<=m;i++){
scanf("%d",&x);
v[x][cnt[x]++]=i;
}
memset(c,0,sizeof c);
memset(dp,0,sizeof dp);
for (int i=1;i<=m;i++)
for (int j=4;j>=0;j--){
int pos=v[a[i]][j];
dp[pos]=max(dp[pos],ask(pos-1)+1);
change(pos,dp[pos]);
}
int ans=0;
for (int i=1;i<=m;i++)
ans=max(ans,dp[i]);
printf("%d",ans);
return 0;
}