Description
阿狸喜欢收藏各种稀奇古怪的东西,最近他淘到一台老式的打字机。打字机上只有28个按键,分别印有26个小写英文字母和'B'、'P'两个字母。
经阿狸研究发现,这个打字机是这样工作的:
l 输入小写字母,打字机的一个凹槽中会加入这个字母(这个字母加在凹槽的最后)。
l 按一下印有'B'的按键,打字机凹槽中最后一个字母会消失。
l 按一下印有'P'的按键,打字机会在纸上打印出凹槽中现有的所有字母并换行,但凹槽中的字母不会消失。
例如,阿狸输入aPaPBbP,纸上被打印的字符如下:
a
aa
ab
我们把纸上打印出来的字符串从1开始顺序编号,一直到n。打字机有一个非常有趣的功能,在打字机中暗藏一个带数字的小键盘,在小键盘上输入两个数(x,y)(其中1≤x,y≤n),打字机会显示第x个打印的字符串在第y个打印的字符串中出现了多少次。
阿狸发现了这个功能以后很兴奋,他想写个程序完成同样的功能,你能帮助他么?
Input
输入的第一行包含一个字符串,按阿狸的输入顺序给出所有阿狸输入的字符。
第二行包含一个整数m,表示询问个数。
接下来m行描述所有由小键盘输入的询问。其中第i行包含两个整数x, y,表示第i个询问为(x, y)。
Output
输出m行,其中第i行包含一个整数,表示第i个询问的答案。
Sample Input
aPaPBbP
3
1 2
1 3
2 3
3
1 2
1 3
2 3
Sample Output
2
1
0
1
0
HINT
1<=N<=10^5
1<=M<=10^5
输入总长<=10^5
emmmmmm...
这个可能是AC自动机入门的必做题???
反正窝貌似对AC自动机的理解更进一步了。
我们考虑只有一个询问怎么做,询问$x$串在$y$串中出现过几次。
我们可以在$trie$树上的根到$y$的节点上暴跳$fail$,然后统计$x$节点被经过了几次。
我们可以这样考虑,其实上面求的东西就是在$fail$树上,$x$所代表的节点的子树中有多少个$y$的节点。
$fail$树是指$fail$指针构成的树。
所以我们可以求出自动机上每个节点的$dfs$序。
然后我们$dfs$ $Trie$树,访问一个节点的时候在$dfs$序上+1,在回溯的时候,把它的$dfs$序的位置-1,这样保证有且仅有一个串被打上了标记,这样就可以直接回答询问了。
然后如果我们跳到某一个单词$i$的结尾,就把$y = i$的所有询问回答了,答案就是他子树中的标记的个数和。
这个用树状数组就可以轻松解决了。
我在建立$fail$指针会破坏原先$trie$树的结构,所以需要备份一份原来的树。
然后就做完了。
#include <iostream> #include <cstdio> #include <cstring> #include <algorithm> #include <queue> #include <vector> using namespace std; #define reg register inline char gc() { static const int bs = 1 << 22; static unsigned char buf[bs], *st, *ed; if (st == ed) ed = buf + fread(st = buf, 1, bs, stdin); return st == ed ? EOF : *st++; } #define gc getchar inline int read() { int res=0;char ch=gc();bool fu=0; while(!isdigit(ch))fu|=(ch=='-'), ch=gc(); while(isdigit(ch))res=(res<<3)+(res<<1)+(ch^48), ch=gc(); return fu?-res:res; } char s[200005]; int T; struct Query { int x, y, id; }Que[200005]; int Ans[200005]; vector <int> ve[200005]; struct FailTree { int nxt, to; }ed[200005]; int head[200005], cnt; inline void add(int x, int y) { ed[++cnt] = (FailTree) {head[x], y}; head[x] = cnt; } int n, nxt[200005][27], End[200005], Father[200005], fail[200005], where[200005], tot; int cpy[200005][27]; inline void AC_Ins() { int len = strlen(s + 1); int now = 0; for (reg int i = 1 ; i <= len ; i ++) { if (s[i] == 'B') now = Father[now]; else if (s[i] == 'P') End[now] = ++n, where[n] = now; else { if (!nxt[now][s[i] - 'a']) nxt[now][s[i] - 'a'] = ++tot, Father[nxt[now][s[i] - 'a']] = now; now = nxt[now][s[i] - 'a']; } } } inline void AC_Build() { queue <int> q; for (reg int i = 0 ; i < 26 ; i ++) if (nxt[0][i]) q.push(nxt[0][i]); while(!q.empty()) { int x = q.front();q.pop(); add(fail[x], x); for (reg int i = 0 ; i < 26 ; i ++) { if (nxt[x][i]) fail[nxt[x][i]] = nxt[fail[x]][i], q.push(nxt[x][i]); else nxt[x][i] = nxt[fail[x]][i]; } } } int in[200005], out[200005]; int Tim; void dfs1(int x) { in[x] = ++Tim; for (reg int i = head[x] ; i ; i = ed[i].nxt) dfs1(ed[i].to); out[x] = Tim; } int tr[200005]; inline void Modify(int x, int y) { while(x <= Tim) { tr[x] += y; x += x & -x; } } inline int Ask(int x) { int res = 0; while(x) { res += tr[x]; x -= x & -x; } return res; } int reply = 1; void dfs2(int x) { Modify(in[x], 1); for (reg int i = 0 ; i < (signed)ve[End[x]].size() ; i ++) Ans[ve[End[x]][i]] = Ask(out[where[Que[ve[End[x]][i]].x]]) - Ask(in[where[Que[ve[End[x]][i]].x]] - 1); for (reg int i = 0 ; i <= 26 ; i ++) if (cpy[x][i]) dfs2(cpy[x][i]); Modify(in[x], -1); } int main() { scanf("%s", s + 1); AC_Ins(); for (reg int i = 0 ; i <= tot ; i ++) for (reg int j = 0 ; j < 26 ; j ++) cpy[i][j] = nxt[i][j]; AC_Build(); dfs1(0); T = read(); for (reg int i = 1 ; i <= T ; i ++) { Que[i].x = read(), Que[i].y = read(); Que[i].id = i; ve[Que[i].y].push_back(i); } dfs2(0); for (reg int i = 1 ; i <= T ; i ++) printf("%d\n", Ans[i]); return 0; }