表示图的三种方法

本文详细介绍了三种图数据结构——边集列表(EdgeList)、邻接矩阵(AdjacencyMatrices)和邻接列表(AdjacencyLists),包括它们的表示方法、优缺点及应用场景。通过对比这些图结构的特点,读者可以更好地理解每种结构的适用场景。
摘要由CSDN通过智能技术生成

(原址)

三标准:

  • 图结构占用的空间
  • 确定图的一条给定边界花费的时间
  • 从给定节点处找到邻居花费的时间

Edge List

  • 以[v,w]为元素的列表,其中v,w为节点编号,每个元素表示一条边;
  • 如果有权重,则元素形式为[v,w,k]
  • 缺点:搜索某一特定边缘,必须进行遍历,最坏情况需要遍历完整个列表(不满足标准2)
    表示方法:
    ```[ [0,1], [0,6], [0,8], [1,4], [1,6], [1,9], [2,4], [2,6], [3,4], [3,5],
    [3,8], [4,5], [4,9], [7,8], [7,9] ]

###Adjacency Matrices(邻接矩阵)
 - 若图有V个节点,那么图的邻接矩阵为V*V大小。
 - 若边界(i,j)存在,则对应矩阵元素值为1,否则为0。
 - 如果有权重,矩阵元素值为权重,可能为`null`
 - 无向图的邻接矩阵是对称的;有向图的邻接矩阵无需对称。
 - **缺点**1:所需存储空间大(特别是在稀疏图中)
 - **缺点**2: 搜索给定顶点的邻居时需要遍历一整行的V个节点(特别是邻居稀少时),花费的时间多,得到的结果少。
![](http://images2017.cnblogs.com/blog/1211148/201802/1211148-20180213223931374-425190949.png)
表示方法:

[ [0, 1, 0, 0, 0, 0, 1, 0, 1, 0],
[1, 0, 0, 0, 1, 0, 1, 0, 0, 1],
[0, 0, 0, 0, 1, 0, 1, 0, 0, 0],
[0, 0, 0, 0, 1, 1, 0, 0, 1, 0],
[0, 1, 1, 1, 0, 1, 0, 0, 0, 1],
[0, 0, 0, 1, 1, 0, 0, 0, 0, 0],
[1, 1, 1, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 1, 1],
[1, 0, 0, 1, 0, 0, 0, 1, 0, 0],
[0, 1, 0, 0, 1, 0, 0, 1, 0, 0] ]


###Adjacency Lists (邻接列表)
 - 对于每个顶点,拥有一个邻接列表,包含所有邻居节点。
 - 如果有权重,邻接列表中每个元素由两个数组成:顶点,权重
![](http://images2017.cnblogs.com/blog/1211148/201802/1211148-20180213224000656-1777970305.png)
表示方法:

[ [1, 6, 8],
[0, 4, 6, 9],
[4, 6],
[4, 5, 8],
[1, 2, 3, 5, 9],
[3, 4],
[0, 1, 2],
[8, 9],
[0, 3, 7],
[1, 4, 7] ]
```

转载于:https://www.cnblogs.com/05410n/p/8447583.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值