【知识总结】多项式全家桶(三点五)(拆系数解决任意模数多项式卷积)

上一篇:【知识总结】多项式全家桶(三)(任意模数 NTT)

5c88b1c69b022.gif

(请无视此图)

我最近学了一个常数小还不用背三个模数的做法:拆系数法

(以下默认多项式项数 \(N=10^5\) ,系数不超过 \(M=10^9\) 且为非负整数)

我们放弃「数论变换」「利用原根性质」之类的想法,来点简单粗暴的:用实数 FFT 把原始结果算出来,然后直接取模。

为什么过去我们没有这样做呢?因为卷积结果的系数最大可能达到 \(NM^2=10^{24}\) ,long double 的精度也不够(通常情况下 double 的精度约为 15 位十进制,long double 的精度约为 19 位十进制)。考虑「拆系数」来牺牲时间保证精度。

设相乘的两个多项式为 \(A(x)=\sum a_ix^i\)\(B(x)=\sum b_ix^i\) ,结果为 \(C(x)=\sum c_ix^i\) 。把\(A(x)\) 拆成两个多项式 \(A_0(x)=\sum {a_0}_ix^i\)\(A_1(x)=\sum {a_1}_ix^i\) ,其中 \({a_1}_i=\lfloor\frac{a_i}{S}\rfloor\)\({a_0}_i=a_i-S\cdot {a_1}_i\) ,即 \(a_i=S\cdot {a_1}_i+{a_0}_i\) 。对 \(B(x)\) 也作同样的操作。这样,就有

\[\begin{aligned} a_ib_j&=(S\cdot {a_1}_i+{a_0}_i)(S\cdot {b_1}_j+{b_0}_j)\\ &={a_1}_i{b_1}_jS^2+({a_1}_i{b_0}_j+{a_0}_i{b_1}_j)S+{a_0}_i{b_0}_j \end{aligned}\]

于是直接计算 \(C_1=A_1*B_1\)\(C_2=A_1*B_0+A_0*B_1\)\(C_3=A_0*B_0\) ,然后 \(c_i={c_1}_iS^2+{c_2}_iS+{c_3}_i\) ,算最后一步的时候对「任意模数」取模即可。

这样,大致估计一下 \(C_1\) 的最大系数是 \(N\cdot(\frac{M}{S})^2=\frac{NM^2}{S^2}\)\(C_2\) 最大系数是 \(2N\cdot\frac{M}{S}\cdot S=2NM\)\(C_3\) 最大系数是 \(NS^2\) 。当 \(S=\sqrt{M}\) 时,以上三项均为 \(NM\) 级别,即 \(10^{14}\) 左右,足以保证精度(跟瓜学的一般偷懒直接 \(S=32768\) )。

代码:

事实上由于只跟 7 个多项式有关,所以只需要进行 7 次 FFT 。我写的常数特别大了不要跟我学 ……

题目:洛谷 4239 多项式求逆(加强版)

#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cctype>
#include <cmath>
using namespace std;

namespace zyt
{
    template<typename T>
    inline bool read(T &x)
    {
        char c;
        bool f = false;
        x = 0;
        do
            c = getchar();
        while (c != EOF && c != '-' && !isdigit(c));
        if (c == EOF)
            return false;
        if (c == '-')
            f = true, c = getchar();
        do
            x = x * 10 + c - '0', c = getchar();
        while (isdigit(c));
        if (f)
            x = -x;
        return true;
    }
    template<typename T>
    inline void write(T x)
    {
        static char buf[20];
        char *pos = buf;
        if (x < 0)
            putchar('-'), x = -x;
        do
            *pos++ = x % 10 + '0';
        while (x /= 10);
        while (pos > buf)
            putchar(*--pos);
    }
    const int N = 1e5 + 10, S = 1 << 15, p = 1e9 + 7, B = 18;
    typedef long double ld;
    typedef long long ll;
    int power(int a, int b)
    {
        int ans = 1;
        while (b)
        {
            if (b & 1)
                ans = (ll)ans * a % p;
            a = (ll)a * a % p;
            b >>= 1;
        }
        return ans;
    }
    int get_inv(const int a)
    {
        return power(a, p - 2);
    }
    ll dtol(const ld x)
    {
        return ll(fabs(x) + 0.5) * (x < 0 ? -1 : 1);
    }
    namespace Polynomial
    {
        const int LEN = 1 << B;
        const ld PI = acos(-1.0L);
        struct cpx
        {
            ld x, y;
            cpx(const ld _x = 0, const ld _y = 0)
                : x(_x), y(_y) {}
            cpx conj()
            {
                return cpx(x, -y);
            }
        }omega[LEN], winv[LEN];
        ll ctol(const cpx &a)
        {
            return dtol(a.x);
        }
        int rev[LEN];
        cpx operator + (const cpx &a, const cpx &b)
        {
            return cpx(a.x + b.x, a.y + b.y);
        }
        cpx operator - (const cpx &a, const cpx &b)
        {
            return cpx(a.x - b.x, a.y - b.y);
        }
        cpx operator * (const cpx &a, const cpx &b)
        {
            return cpx(a.x * b.x - a.y * b.y, a.y * b.x + a.x * b.y);
        }
        void init(const int n, const int lg2)
        {
            cpx w = cpx(cos(2.0L * PI / n), sin(2.0L * PI / n)), wi = w.conj();
            omega[0] = winv[0] = 1;
            for (int i = 1; i < n; i++)
                omega[i] = omega[i - 1] * w, winv[i] = winv[i - 1] * wi;
            for (int i = 0; i < n; i++)
                rev[i] = ((rev[i >> 1] >> 1) | ((i & 1) << (lg2 - 1)));
        }
        void FFT(cpx *const a, const cpx * const w, const int n)
        {
            for (int i = 0; i < n; i++)
                if (i < rev[i])
                    swap(a[i], a[rev[i]]);
            for (int l = 1; l < n; l <<= 1)
                for (int i = 0; i < n; i += (l << 1))
                    for (int k = 0; k < l; k++)
                    {
                        cpx x = a[i + k], y = a[i + l + k] * w[n / (l << 1) * k];
                        a[i + k] = x + y, a[i + l + k] = x - y;
                    }
        }
        void mul(const cpx *const a, const cpx *const b, cpx *const c, const int n)
        {
            static cpx x[LEN], y[LEN];
            int m = 1, lg2 = 0;
            while (m < (n + n - 1))
                m <<= 1, ++lg2;
            init(m, lg2);
            memcpy(x, a, sizeof(cpx[n]));
            memcpy(y, b, sizeof(cpx[n]));
            for (int i = n; i < m; i++)
                x[i] = y[i] = 0;
            FFT(x, omega, m), FFT(y, omega, m);
            for (int i = 0; i < m; i++)
                x[i] = x[i] * y[i];
            FFT(x, winv, m);
            for (int i = 0; i < n; i++)
                c[i] = cpx(x[i].x / m, 0.0);
        }
        void MTT(const int *const a, const int *const b, int *const ans, const int n)
        {
            const int S = 1 << 15;
            static cpx a0[LEN], a1[LEN], b0[LEN], b1[LEN], c1[LEN], c2[LEN], c3[LEN], c4[LEN];
            for (int i = 0; i < n; i++)
            {
                a0[i] = cpx(a[i] % S, 0), a1[i] = cpx(a[i] / S, 0);
                b0[i] = cpx(b[i] % S, 0), b1[i] = cpx(b[i] / S, 0);
            }
            mul(a0, b0, c1, n), mul(a0, b1, c2, n), mul(a1, b0, c3, n), mul(a1, b1, c4, n);
            for (int i = 0; i < n; i++)
            {
                int x1 = ctol(c1[i]) % p, x2 = ctol(c2[i]) % p, x3 = ctol(c3[i]) % p, x4 = ctol(c4[i]) % p;
                ans[i] = (x1 + ll(x2 + x3) * S % p + ll(x4) * S % p * S % p) % p;
            }
        }
        void _inv(const int *const a, int *b, const int n)
        {
            if (n == 1)
                return void(b[0] = get_inv(a[0]));
            static int tmp[LEN];
            _inv(a, b, (n + 1) >> 1);
            memset(b + ((n + 1) >> 1), 0, sizeof(int[n - ((n + 1) >> 1)]));
            MTT(a, b, tmp, n), MTT(tmp, b, tmp, n);
            for (int i = 0; i < n; i++)
                b[i] = (2LL * b[i] % p - tmp[i] + p) % p;
        }
        void inv(const int *const a, int *b, const int n)
        {
            static int tmp[LEN];
            memcpy(tmp, a, sizeof(int[n]));
            _inv(tmp, b, n);
        }
    }
    int A[N << 1];
    int work()
    {
        using namespace Polynomial;
        int n;
        read(n);
        for (int i = 0; i < n; i++)
            read(A[i]);
        inv(A, A, n);
        for (int i = 0; i < n; i++)
            write(A[i]), putchar(' ');
        return 0;
    }
}
int main()
{
#ifdef BlueSpirit
    freopen("4239.in", "r", stdin);
#endif
    return zyt::work();
}

转载于:https://www.cnblogs.com/zyt1253679098/p/11160807.html

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值