读入后,要进行组内排序,按groupseq字段排序后,然后统计前后两个项的个数,累加到全局。
sorted函数使用如下:
def sortlist(alllist):
sorted_key1_1=sorted(alllist,key=lambda k:k['groupseq'])
return sorted_key1_1
keylist = readline()
for key in keylist:
sortlist=(keylist[key])
全段代码如下
#!/usr/bin/python
# -*- coding: utf-8 -*-
#vim set ts=4 expandtab
import sys
keylist={}
def readline():
global keylist
filecontent= open('g:\\test.txt','r')
for line in filecontent.xreadlines():
#for line in sys.stdin:
line.strip()
items=line.split("\t")
count=0
appid = items[count]
count= count+1
app_version = items[count]
count= count+1
act_name=items[count]
count=count+1
groupkey=items[count]
count=count+1
ggg=items[count]
groupseq=int(ggg)
count=count+1
act_dur=items[count]
act_dur.strip()
count=count+1
key1 = "\t".join((appid,app_version,groupkey))
value1={}
value1['act_name']=act_name
value1['groupseq']=groupseq
value1['act_dur']=act_dur
if not key1 in keylist:
keylist[key1]=[]
keylist[key1].append(value1)
#it="\t".join((appid,app_version,groupkey,act_name,groupseq,act_dur))
#print it.strip()
#return keylist
def sortlist(alllist):
sorted_key=sorted(alllist,key=lambda k:k['groupseq'])
#print sorted_key
#print type(sorted_key)
return sorted_key
if __name__ == '__main__':
countall={}
duration={}
readline()
for keys in keylist.keys():
sorted_list=sortlist(keylist[keys])
#print sorted_list[0]
length=len(sorted_list)
#for value in sorted_list:
prev_page=""
for i in range(length):
current_page = sorted_list[i]['act_name']
if "unknown" == current_page:
prev_page = current_page
#continue
else:
num=sorted_list[i]['act_dur']
count_duration=float(num.strip())
allkeys=keys.split("\t")
keycount='\t'.join((allkeys[0],allkeys[1],prev_page,current_page))
if not keycount in countall:
countall[keycount]=0
countall[keycount]+=1
if not keycount in duration:
duration[keycount]=0
duration[keycount] += count_duration
if current_page == "exit":
break
prev_page = current_page
for key_cou in countall:
output="\t".join((key_cou,str(countall[key_cou]),str(duration[key_cou])))
#output = "\t".join((key_cou,str(countall[key_cou])))
print output.strip()
这里的列表中,元素为字典。用key传函数,参数为x["key],这里的x在运行时,会被赋成列表中每个字典对象
f = [{'name':'abc','age':20},{'name':'def','age':30},{'name':'ghi','age':25}]
def age(s):
return s['age']
print sorted(f,key = age)#列表按f中字典的age从小到大排序。也就是说,传给s的是每个字典对象,s是一个字典形参,调用s["key"],则按key排序每个子元素。
也可以:print sorted(f,key = lambda x:x["name"])。#lambda见下面解释使用时,相当于调用key(x)这个函数,其中x被赋值为传入的对象,在这里是每个子对象字典。返回值为x[0],而正是按这个返回值排序。
结果如下:
[{'age': 20, 'name': 'abc'}, {'age': 25, 'name': 'ghi'}, {'age': 30, 'name': 'def'}]
lambda这个匿名函数,使用如下:
m = lambda x,y,z: (x-y)*z#x是参数,函数名是标示符m
print m(3,1,2)#使用时,标示符m作为参数名,,x,y,z作为参数传入。
结果是4
总结,m为函数名,xyz为形参,表达式为返回值
而字典排序:
sl={'b':2,'a':1,'d':4,'c':3}
print sorted(sl,key=lambda x:x[0])#等同于:print sorted(sl,key=lambda x:x
['a', 'b', 'c', 'd'],注意如果是x[1]就报错了。
python对容器内数据的排序有两种,一种是容器自己的sort函数,一种是内建的sorted函数。
不同在于sort是在原位重新排列列表,而sorted()是产生一个新的列表:
--------------------------------sorted---------------------------------------
>>> help(sorted)
Help on built-in function sorted in module __builtin__:
sorted(...)
sorted(iterable, cmp=None, key=None, reverse=False) --> new sorted list
---------------------------------sort----------------------------------------
>>> help(list.sort)
Help on method_descriptor:
sort(...)
L.sort(cmp=None, key=None, reverse=False) -- stable sort *IN PLACE*;
-----------------------------------------------------------------------------
>>> print sorted([5, 2, 3, 1, 4]) [1, 2, 3, 4, 5]
>>> L = [5, 2, 3, 1, 4] >>> L.sort() >>> print L [1, 2, 3, 4, 5]
def lastchar(s):
return s[-1]
e = ['abc','b','AAz','ef']
sorted(e,key = lastchar) #自定义函数排序,lastchar为函数名,这个函数返回列表e中每个元素的最后一个字母
['b', 'abc', 'ef', 'AAz'] #sorted(e,key=lastchar)作用就是 按列表e中每个元素的最后一个字母的ascii码从小到大排序
sorted(...)
sorted(iterable, cmp=None, key=None, reverse=False) --> new sorted list
iterable:是可迭代类型;
cmp:是带两个参数的比较函数,比较内容由另一个参数key决定,返回值: 负数: e1 < e2, 0: e1 == e2, 正数: e1 > e2. 默认为 None, 即内建的比较函数.
key:是带一个参数的函数, 用来为每个元素提取比较值. 默认为 None, 即直接比较每个元素.
reverse:排序规则. reverse = True 或者 reverse = False,有默认值。
返回值:是一个排序的可迭代类型,与iterable一样。
通常, key 和 reverse 比 cmp 快很多, 因为对每个元素它们只处理一次; 而 cmp 会处理多次
对由字典排序
- >>> d = {'data1':3,'data2':1,'data3':2,'data4':4}
- >>> sorted(d.iteritems(), key=itemgetter(1), reverse=True)
- [('data4', 4), ('data1',3), ('data3',2), ('data2',1)]
引自:http://www.cnblogs.com/linyawen/archive/2012/03/15/2398292.html
Python的内置dictionary数据类型是无序的,通过key来获取对应的value。可是有时我们需要对dictionary中 的item进行排序输出,可能根据key,也可能根据value来排。
list的排序,使用如下
使用cmp:
>>>L = [('b',2),('a',1),('c',3),('d',4)]
>>>print sorted(L, cmp=lambda x,y:cmp(x[1],y[1]))
[('a', 1), ('b', 2), ('c', 3), ('d', 4)]
使用keys:
>>>L = [('b',2),('a',1),('c',3),('d',4)]
>>>print sorted(L, key=lambda x:x[1]))
[('a', 1), ('b', 2), ('c', 3), ('d', 4)]
reverse是决定正序还是倒序的:
>>> print sorted([5, 2, 3, 1, 4], reverse=True) [5, 4, 3, 2, 1]
>>> print sorted([5, 2, 3, 1, 4], reverse=False) [1, 2, 3, 4, 5] 注:效率key>cmp(key比cmp快) 在Sorting Keys中:我们看到,此时排序过的L是仅仅按照第二个关键字来排的,如果我们想用第二个关键字 排过序后再用第一个关键字进行排序呢? >>> L = [('d',2),('a',4),('b',3),('c',2)] >>> print sorted(L, key=lambda x:(x[1],x[0])) >>>[('c', 2), ('d', 2), ('b', 3), ('a', 4)]
用 operator 函数来加快速度, 上面排序等价于:(itemgetter的用法见 注释2)
- >>> from operator import itemgetter, attrgetter
- >>> sorted(students, key=itemgetter(2))
>>> from operator import itemgetter, attrgetter
>>> sorted(students, key=itemgetter(2))
用 operator 函数进行多级排序
- >>> sorted(students, key=itemgetter(1,2))# sort by grade then by age
- [('john', 'A',15), ('dave','B',10), ('jane','B',12)]
>>> sorted(students, key=itemgetter(1,2)) # sort by grade then by age
[('john', 'A', 15), ('dave', 'B', 10), ('jane', 'B', 12)]