scale-free network

本文介绍了无尺度现象的概念及其在网络中的表现形式,并探讨了导致这种现象产生的原因,包括优先连接性和网络成长性等因素。

原文链接:http://lihailian.bokee.com/6013647.html

1.什么是无尺度现象?

 

统计物理学家习惯于把服从幂次分布的现象称为无尺度现象。

 

在做大量统计实验之前,科学家预测,连接数k应当服从泊松分布或正态分布,即每个网站的被访问量差异不会太大,就像人类身高差异不会太大那样。然而,实测结果推翻了这个预测。Barabasi等人设计了一种软件,可以从一个节点跳到另一节点,收集并记录网上的所有连接。在对几十万个节点进行统计后发现:在绝大多数网站的连接数很少的情况下,却有极少数网站拥有高于普通网站百倍、千倍甚至万倍的连接数。就像在茫茫人海中突然发现若干身高数百尺的巨人那样,令人意外。巨人的身高之大,已不能用普通人高度的尺度来度量,于是想出了“无尺度”的一词,反映少数节点连接数超乎异常的事实。

 

实验结果用数学语言表达为:出现连接数为k的概率 p(k),反比于k的n次方。其中,n称为幂数,它是很接近于2的一个常数。

 

也就是说,WWW巳成为无尺度网络(scale free network)。

 

2. 无尺度现象的成因

 

无尺度现象的成因,可以从多种角度解释。

 

Barabasi等人认为,优先连接性和网络的成长性是两个起因。所谓成长性是指网民网页急剧增加,优先连接性是指新网民总是优先选择前人经常访问的网站。随着时间的演进,某些热门的网站愈加热门,不知名的网站愈加冷门。计算机仿真可以演示验证,WWW如何由相对均匀分布的随机网络逐渐演化为极不均衡分布的无尺度网络。

 

所以,信息社会同时兼有“大世界”与“小世界”两种属性。一方面,网民、网页、带宽随时间快速成长,使WWW巳成为名副其实的全球范围内的巨大网络(world wide web)。另一方面,这个庞然大物是为一个个人提供服务的,每个人一天之内所能接受的信息,受到生理带宽与生理精力的限制,又是一个不随时间增长的有限世界。大世界与小世界之间,技术世界与人文世界之间存在明显的差异与矛盾。

 

而信息学家认为,无尺度现象反映了信息共享和物质共享存在本质差异。信息共享的本质,是信源母体不限数量(scale free)的复制(copy);物质共享的本质,只是资源母体有限量的瓜分(share)。

转载于:https://www.cnblogs.com/langren1992/p/5529926.html

clear, clc, close all %% 参数设置 N = 100; % 网络节点数 m0 = 5; % 初始节点数(必须 >= m) m = 3; % 每个新增节点连接的边数 (m <= m0) K = 10; % 非零频率分量数量(低频保留) SNR_dB = 10; % 信噪比 10 dB %% 生成 BA 无标度网络 % 调用你的函数生成 BA 网络 [A, L, V_sorted, d_sorted] = generate_ba_scale_free_graph_corrected(N, m0, m); % 确保邻接矩阵对称且无自环(适用于无向图) A = triu(A, 1); % 去除对角线并取上三角 A = A + A'; % 对称化 A = double(A > 0); % 二值化 %% 更新图拉普拉斯矩阵和特征分解(确保一致性) D = diag(sum(A, 2)); L = D - A; [V, D_eig] = eig(full(L)); d = diag(D_eig); [d_sorted, idx] = sort(d); V_sorted = V(:, idx); % 按特征值从小到大排序特征向量 %% 创建受限频域信号(仅前K个低频分量非零) freq_coeffs = 0.5 * rand(K, 1); % [0, 0.5] 内随机赋值 full_freq = zeros(N, 1); full_freq(1:K) = freq_coeffs; % 图傅里叶逆变换 → 节点域信号 node_signals = V_sorted * full_freq; %% 添加高斯白噪声 signal_power = var(node_signals); noise_power = signal_power / (10^(SNR_dB/10)); noise = sqrt(noise_power) * randn(size(node_signals)); noisy_signals = node_signals + noise; %% 可视化网络结构和信号分布 figure('Position', [100, 100, 800, 600]); G = graph(A); % 力导向布局绘图,节点颜色表示含噪信号值 h = plot(G, ... 'Layout', 'force', ... 'Iterations', 500, ... 'NodeCData', noisy_signals, ... % 控制节点颜色 'Marker', 'o', ... 'MarkerSize', 6, ... 'LineWidth', 1.0, ... 'EdgeAlpha', 0.4, ... 'NodeLabel', {}); % 设置颜色映射 colormap(jet) caxis([min(noisy_signals), max(noisy_signals)]) cb = colorbar('Location', 'eastoutside'); cb.Label.String = 'Node Signal Value'; % 标题与美化 title('BA Scale-Free Network with Noisy Graph Signal (Low-Frequency Excitation)', ... 'FontSize', 14, 'FontWeight', 'bold'); axis equal off 将以上代码改为无信号值的结构图,像上一个ER图一样
最新发布
10-10
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值