luogu P1037 产生数

原题链接:https://www.luogu.org/problem/show?pid=1037

首先,我不知道标签的搜索是哪里来的,这明明就是个Floyd+乘法原理

首先0—9每个数自己想自己连边,然后读入给出的边,跑一边Floyd,因为此题并没有要求步数的要求,所以只需要记录能否到达即可。1为能到达。

然后统计每一个数字都能到达几个数字(本身也算),将所有结果乘起来,用高精度处理一下就好了

 

#include<cstdio>
#include<cstring>
int n,e[20][20];
int num[20],ans[50],l;
char a[50];
int main()
{
    scanf("%s %d",a,&n);
    for(int i=1;i<=n;i++)
    {
        int x,y;
        scanf("%d %d",&x,&y);
        e[x][y]=1;
    }
    for(int i=0;i<=9;i++) e[i][i]=1;
    for(int k=0;k<=9;k++)
    {
        for(int i=0;i<=9;i++)
        {
            for(int j=0;j<=9;j++)
            {
                if(e[i][k]==1&&e[k][j]==1) e[i][j]=1;
            }
        }
    }
    int len=strlen(a);
    for(int i=0;i<len;i++)
    {
        int s=a[i]-'0';
        for(int j=0;j<=9;j++)
        {
            if(e[s][j]==1) num[i]++;  
        }
    }
    ans[0]=1;
    for(int i=0;i<len;i++)
    {
        for(int j=0;j<=l;j++) ans[j]*=num[i];
        for(int j=0;j<=l;j++)
        {
            if(ans[j]>9)
            {
                ans[j+1]+=ans[j]/10;
                ans[j]%=10;
            }
        }
        if(ans[l+1]!=0) l++;
    }
    for(int i=l;i>=0;i--) printf("%d",ans[i]);
    return 0;
}

 

转载于:https://www.cnblogs.com/zeroform/p/7693803.html

深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成据,判别器评估据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函。 9. **损失函(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值