【BZOJ5291】[BJOI2018]链上二次求和(线段树)

【BZOJ5291】[BJOI2018]链上二次求和(线段树)

题面

BZOJ
洛谷

题解

考虑一次询问\([l,r]\)的答案。其中\(S\)表示前缀和
\(\displaystyle \sum_{i=l}^r\sum_{j=i}^n S_{j-i+1,j}=\sum_{i=l}^r\sum_{j=i}^nS_j-S_{j-i}=\sum_{i=l}^r(\sum_{j=i}^nS_j-\sum_{j=0}^{n-i}S_j)\)
转成二维前缀和的形式\(SS_i\),可以写成\(\displaystyle \sum_{i=l}^r(SS_n-SS_{i-1}-SS_{n-i})\)
转为二维前缀和的区间求和问题。
那么考虑如何使用线段树动态的维护二维前缀和,显然使用一个维护二次函数作为标记的线段树来做对应的处理。细节自己思考一下吧。
标题已经告诉你了一切

然而BZOJ上TLE了嘤嘤嘤。

#include<iostream>
#include<cstdio>
using namespace std;
#define lson (now<<1)
#define rson (now<<1|1)
#define MOD 1000000007
#define inv2 500000004
#define inv6 166666668
#define MAX 200200
void add(int &x,int y){x=(x+y)%MOD;}
inline int read()
{
    int x=0;bool t=false;char ch=getchar();
    while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
    if(ch=='-')t=true,ch=getchar();
    while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
    return t?-x:x;
}
struct Node{int s,a,b,c;}t[MAX<<2];
int n,Q,a[MAX],ss[MAX];
void Build(int now,int l,int r)
{
    if(l==r){t[now].s=ss[l];return;}
    int mid=(l+r)>>1;
    Build(lson,l,mid);Build(rson,mid+1,r);
    t[now].s=(t[lson].s+t[rson].s)%MOD;
}
int SS(int n){return 1ll*n*(n+1)%MOD*(n+n+1)%MOD*inv6%MOD;}
int S(int l,int r){return 1ll*(l+r)*(r-l+1)/2%MOD;}
void puttag(int now,int l,int r,int a,int b,int c)
{
    int s=S(l,r),ss=(SS(r)+MOD-SS(l-1))%MOD;
    add(t[now].s,1ll*a*ss%MOD);
    add(t[now].s,1ll*b*s%MOD);
    add(t[now].s,1ll*c*(r-l+1)%MOD);
    add(t[now].a,a);add(t[now].b,b);add(t[now].c,c);
}
#define TAG t[now].a,t[now].b,t[now].c
void pushdown(int now,int l,int r)
{
    int mid=(l+r)>>1;
    puttag(lson,l,mid,TAG);
    puttag(rson,mid+1,r,TAG);
    t[now].a=t[now].b=t[now].c=0;
}
void Modify(int now,int l,int r,int L,int R,int a,int b,int c)
{
    if(L>R)return;
    if(L<=l&&r<=R){puttag(now,l,r,a,b,c);return;}
    int mid=(l+r)>>1;pushdown(now,l,r);
    if(L<=mid)Modify(lson,l,mid,L,R,a,b,c);
    if(R>mid)Modify(rson,mid+1,r,L,R,a,b,c);
    t[now].s=(t[lson].s+t[rson].s)%MOD;
}
int Query(int now,int l,int r,int L,int R)
{
    if(L<=l&&r<=R)return t[now].s;
    int mid=(l+r)>>1,ret=0;pushdown(now,l,r);
    if(L<=mid)add(ret,Query(lson,l,mid,L,R));
    if(R>mid)add(ret,Query(rson,mid+1,r,L,R));
    return ret;
}
int main()
{
    n=read();Q=read();
    for(int i=1;i<=n;++i)a[i]=ss[i]=read();
    for(int i=1;i<=n;++i)ss[i]=(ss[i-1]+ss[i])%MOD;
    for(int i=1;i<=n;++i)ss[i]=(ss[i-1]+ss[i])%MOD;
    Build(1,0,n);
    while(Q--)
    {
        int opt=read(),l=read(),r=read();
        if(l>r)swap(l,r);
        if(opt==1)
        {
            int d=1ll*read()*inv2%MOD,a=d;
            int b=d;add(b,MOD-2ll*(l-1)*d%MOD);
            int c=1ll*(l-1)*(l-1)%MOD*d%MOD;add(c,MOD-1ll*(l-1)*d%MOD);
            Modify(1,0,n,l,r,a,b,c);
            int pls=0,k=2ll*(r-l+1)*d%MOD;
            add(pls,1ll*a*r%MOD*r%MOD);
            add(pls,1ll*b*r%MOD);add(pls,c);
            add(pls,MOD-1ll*r*k%MOD);
            Modify(1,0,n,r+1,n,0,k,pls);
        }
        else
        {
            int ans=1ll*Query(1,0,n,n,n)*(r-l+1)%MOD;
            add(ans,MOD-Query(1,0,n,l-1,r-1));
            add(ans,MOD-Query(1,0,n,n-r,n-l));
            printf("%d\n",ans);
        }
    }
    return 0;
}

转载于:https://www.cnblogs.com/cjyyb/p/10403128.html

内容概要:本文档详细介绍了一个利用Matlab实现Transformer-Adaboost结合的时间序列预测项目实例。项目涵盖Transformer架构的时间序列特征提取与建模,Adaboost集成方法用于增强预测性能,以及详细的模型设计思路、训练、评估过程和最终的GUI可视化。整个项目强调数据预处理、窗口化操作、模型训练及其优化(包括正则化、早停等手段)、模型融合策略和技术部署,如GPU加速等,并展示了通过多个评估指标衡量预测效果。此外,还提出了未来的改进建议和发展方向,涵盖了多层次集成学习、智能决策支持、自动化超参数调整等多个方面。最后部分阐述了在金融预测、销售数据预测等领域中的广泛应用可能性。 适合人群:具有一定编程经验的研发人员,尤其对时间序列预测感兴趣的研究者和技术从业者。 使用场景及目标:该项目适用于需要进行高质量时间序列预测的企业或机构,比如金融机构、能源供应商和服务商、电子商务公司。目标包括但不限于金融市场的波动性预测、电力负荷预估和库存管理。该系统可以部署到各类平台,如Linux服务器集群或云计算环境,为用户提供实时准确的预测服务,并支持扩展以满足更高频率的数据吞吐量需求。 其他说明:此文档不仅包含了丰富的理论分析,还有大量实用的操作指南,从项目构思到具体的代码片段都有详细记录,使用户能够轻松复制并改进这一时间序列预测方案。文中提供的完整代码和详细的注释有助于加速学习进程,并激发更多创新想法。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值