ACM学习历程—HDU4675 GCD of Sequence(莫比乌斯)

Description

Alice is playing a game with Bob. 
Alice shows N integers a 1, a 2, …, a N, and M, K. She says each integers 1 ≤ a i ≤ M. 
And now Alice wants to ask for each d = 1 to M, how many different sequences b 1, b 2, …, b N. which satisfies : 
1. For each i = 1…N, 1 ≤ b[i] ≤ M 
2. gcd(b 1, b 2, …, b N) = d 
3. There will be exactly K position i that ai != bi (1 ≤ i ≤ n) 

Alice thinks that the answer will be too large. In order not to annoy Bob, she only wants to know the answer modulo 1000000007.Bob can not solve the problem. Now he asks you for HELP! 
Notes: gcd(x 1, x 2, …, x n) is the greatest common divisor of x 1, x 2, …, x n

  

Input

The input contains several test cases, terminated by EOF. 
The first line of each test contains three integers N, M, K. (1 ≤ N, M ≤ 300000, 1 ≤ K ≤ N) 
The second line contains N integers: a 1, a 2, ..., a n (1 ≤ a i ≤ M) which is original sequence. 

  

Output

For each test contains 1 lines : 
The line contains M integer, the i-th integer is the answer shows above when d is the i-th number. 

  

Sample Input

3 3 33 3 33 5 31 2 3 

  

Sample Output

7 1 059 3 0 1 1 

Hint

 In the first test case : when d = 1, {b} can be : (1, 1, 1) (1, 1, 2) (1, 2, 1) (1, 2, 2) (2, 1, 1) (2, 1, 2) (2, 2, 1) when d = 2, {b} can be : (2, 2, 2) And because {b} must have exactly K number(s) different from {a}, so {b} can't be (3, 3, 3), so Answer = 0 

 

题目关键在于找出什么东西是可以求的。

之前做过莫比乌斯的题目,一般都是d | gcd的比较好求。

那么考虑对于d | gcd的情况F(d)有多少种?

如果当前数列里面有num[d]个数是d的倍数。

首先由于要改掉k个,那么有n-k个数是不变的,如果这些数有不是d的倍数,那么不满足条件了。

即如果n-k > num[d]F(d) == 0

于是对于余下的n-k,可以从num[d]个数中选取,即C(num[d], n-k)

然后对于被改掉了k个数来说,里面肯定有num[d]-(n-k)个数是d的倍数,则有quickPow(m/d-1,num[d]-(n-k))种选法。最后剩余的n-num[i]个数,则有quickPow(m/i, n-num[i])种选法。最后乘起来就是结果了。需要对于0的情况考虑一下。

于是F(d)有了,而F(d) = sum(f(n)) (d|n)

这一步网上有把F(d)一道一边,f(d)一到另一边计算的。这里采用莫比乌斯反演。

然后C组合数的求法的话,预处理出所有排列数p[]和逆元invp[],这里的invp是用前一个invp[i-1]乘上i的逆元计算的,i的逆元又是用O(n)算法先处理出来的。总的复杂度是O(n)

快速幂复杂度是logn

然后莫比乌斯的复杂度是nlogn

最后总的复杂度是nlogn的。

 

代码:

#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cmath>
#include <cstring>
#include <algorithm>
#include <set>
#include <map>
#include <queue>
#include <string>
#define LL long long
#define MOD 1000000007

using namespace std;

const int maxN = 300010;
int n, m, k;
int num[maxN];
int sum[maxN];
int p[maxN], inv[maxN], invp[maxN];
int u[maxN], prime[maxN];
bool vis[maxN];
int ans[maxN];

//莫比乌斯反演
//F(n)和f(n)是定义在非负整数集合上的两个函数
//并且满足条件F(n) = sum(f(d)) (d|n)
//那么f(n) = sum(u(d)*F(n/d)) (d|n)
//case 1: if d = 1, u(d) = 1
//case 2: if d = p1*p2...pk, (pi均为互异素数), u(d) = (-1)^k
//case 3: else, u(d) = 0;
//性质1: sum(u(d)) (d|n) = 1 (n == 1) or 0 (n > 1)
//性质2: sum(u(d)/d) (d|n) = phi(n)/n
//另一种形式:F(d) = sum(f(n)) (d|n) => f(d) = sum(u(n/d)*F(n)) (d|n)
//线性筛选求莫比乌斯反演函数代码
void mobius()
{
    memset(vis, false,sizeof(vis));
    u[1] = 1;
    int cnt = 0;
    for(int i = 2; i < maxN; i++)
    {
        if(!vis[i])
        {
            prime[cnt++] = i;
            u[i] = -1;
        }
        for(int j = 0; j < cnt && i*prime[j] < maxN; j++)
        {
            vis[i*prime[j]] = true;
            if(i%prime[j])
                u[i*prime[j]] = -u[i];
            else
            {
                u[i*prime[j]] = 0;
                break;
            }
        }
    }
}

void init()
{
    mobius();
    //***预处理所有i在质数MOD下的逆元
    inv[1] = 1;
    for (int i = 2; i < maxN; i++)
        inv[i] = (LL)inv[MOD%i]*(MOD-MOD/i) % MOD;
    p[0] = 1;
    invp[0] = inv[1];
    for (int i = 1; i < maxN; ++i)
    {
        p[i] = (LL)p[i-1]*i%MOD;
        invp[i] = (LL)invp[i-1]*inv[i]%MOD;
    }
}

void input()
{
    memset(num, 0, sizeof(num));
    int tmp;
    for (int i = 0; i < n; ++i)
    {
        scanf("%d", &tmp);
        num[tmp]++;
    }

    for (int i = 1; i <= m; ++i)
    {
        for (int j = i*2; j <= m; j += i)
            num[i] += num[j];
    }
}

inline int C(int x, int y)
{
    int ans;
    ans = (LL)p[x]*invp[x-y]%MOD;
    ans = (LL)ans*invp[y]%MOD;
    return ans;
}

//快速幂m^n
LL quickPow(LL x, int n)
{
    if (n == 0)
        return 1;
    if (x == 0)
        return 0;
    LL a = 1;
    while (n)
    {
        a *= n&1 ? x : 1;
        a %= MOD;
        n >>= 1 ;
        x *= x;
        x %= MOD;
    }
    return a;
}

void work()
{
    memset(sum, 0, sizeof(sum));
    memset(ans, 0, sizeof(ans));
    for (int i = 1; i <= m; ++i)
    {

        if (num[i] < n-k)
            sum[i] = 0;
        else
        {
            sum[i] = C(num[i], n-k)*quickPow(m/i, n-num[i])%MOD;
            sum[i] = quickPow(m/i-1, num[i]-(n-k))*sum[i]%MOD;
        }
    }
    for (int i = 1; i <= m; ++i)
    {
        for (int j = i; j <= m; j += i)
        {
            ans[i] += (LL)u[j/i]*sum[j]%MOD;
            ans[i] = (ans[i]%MOD+MOD)%MOD;
        }
    }
    for (int i = 1; i <= m; ++i)
    {
        if (i != 1)
            printf(" ");
        printf("%d", ans[i]);
    }
    printf("\n");
}

int main()
{
    //freopen("test.in", "r", stdin);
    init();
    while (scanf("%d%d%d", &n, &m, &k) != EOF)
    {
        input();
        work();
    }
    return 0;
}

 

转载于:https://www.cnblogs.com/andyqsmart/p/4868248.html

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
资源包主要包含以下内容: ASP项目源码:每个资源包中都包含完整的ASP项目源码,这些源码采用了经典的ASP技术开发,结构清晰、注释详细,帮助用户轻松理解整个项目的逻辑和实现方式。通过这些源码,用户可以学习到ASP的基本语法、服务器端脚本编写方法、数据库操作、用户权限管理等关键技术。 数据库设计文件:为了方便用户更好地理解系统的后台逻辑,每个项目中都附带了完整的数据库设计文件。这些文件通常包括数据库结构图、数据表设计文档,以及示例数据SQL脚本。用户可以通过这些文件快速搭建项目所需的数据库环境,并了解各个数据表之间的关系和作用。 详细的开发文档:每个资源包都附有详细的开发文档,文档内容包括项目背景介绍、功能模块说明、系统流程图、用户界面设计以及关键代码解析等。这些文档为用户提供了深入的学习材料,使得即便是从零开始的开发者也能逐步掌握项目开发的全过程。 项目演示与使用指南:为帮助用户更好地理解和使用这些ASP项目,每个资源包中都包含项目的演示文件和使用指南。演示文件通常以视频或图文形式展示项目的主要功能和操作流程,使用指南则详细说明了如何配置开发环境、部署项目以及常见问题的解决方法。 毕业设计参考:对于正在准备毕业设计的学生来说,这些资源包是绝佳的参考材料。每个项目不仅功能完善、结构清晰,还符合常见的毕业设计要求和标准。通过这些项目,学生可以学习到如何从零开始构建一个完整的Web系统,并积累丰富的项目经验。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值