北京邮电大学计算机视觉博士,双锴 教授 博导/硕导

本文综述了近年来深度学习在自然语言处理领域的关键成果,包括基于LSTM的长短期记忆模型、多原型融合的卷积-解卷积词嵌入方法、神经网络驱动的文本分类和情感分析技术。重点介绍了注意力机制和位置感知的双LSTM模型(AELA-DLSTMs)以及用于情感信息收集和提取的架构。文章还探讨了机器理解中的全局视角——SummaryFilter,展示了深度学习在机器 comprehension 中的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

部分第一作者论文

[1] Major-minor long short-term memory for word-level language model. IEEE Transactions on Neural Networks and Learning Systems. 2019.12. 1:15

[2]  Convolution–deconvolution word embedding: An end-to-end multi-prototype fusion embedding method for natural language processing, Information Fusion, 2020.1.1. 53:112-122.

[3]  A word-building method based on neural network for text classification, Journal of Experimental & Theoretical Artificial Intelligence, 2019.1.30, 2019:1-20.

[4] AELA-DLSTMs: Attention-Enabled and Location-Aware Double LSTMs for aspect-level sentiment classification, Neurocomputing, 2018.12.30, 334:25-34

[5] A sentiment information Collector–Extractor architecture based neural network for sentiment analysis, Information Sciences, 2018.10, 467:549-558.

[6] Summarization Filter: Consider More About the Whole Query in Machine Comprehension, IEEE ACCESS, 2018.10.4, 6:58702-58709.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值