并查集的应用 ,Kruskal,最小生成树算法。
求加权连通图的最小生成树的算法。kruskal算法总共选择n- 1条边,(共n个点);
每次从剩下的边中选择一条不会产生环路的具有最小耗费(最小权值)的边加入已选择的边的集合中。
直到选择完第n-1条边。
算法步骤
1.创建一个森林(很多棵树),无向图中的每个节点就是一棵树
2.创建一个集合S,这个集合中保存了最小生成树中的边,初始化S为空。
3.将无向图中的所有边看做另一个集合E,将边按照从小到大的顺序排序
4.将E中的边依次加入S中,直到所有的边(n-1条)都在同一个连通分量里边中。
给出算法的伪代码形式:
KRUSKAL(G):
1 A = ∅ //最小生成树的集合
2 foreach v ∈ G.V: //
3 MAKE-SET(v)
4 foreach (u, v) ordered by weight(u, v), increasing: //对每一条边升序排序
5 ifFIND-SET(u) ≠ FIND-SET(v): //如果不联通
6 A = A ∪{(u, v)} // 将这个边并到 A中
7 UNION(u,v)
8 return A
用结构体构造边
struct edge{
int v1,v2,len;
};
对于 每次需要加入最小权值的边, 我们可以用 <algorithm>中的 sort 来对边进行排序
int cmp(const node& a, const node& b){
return a.len<b.len;
}
sort(edge,edge+len,cmp);
是否产生环路,我们可以用并查集来处理。
这里给出一个简单的例题:
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1233
还是畅通工程
Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)Total Submission(s): 32394 Accepted Submission(s): 14577
当N为0时,输入结束,该用例不被处理。
【源代码】
#include <algorithm>
#include <cstdio>
using namespace std;
const int maxn =5000+10;
struct node{
int a,b,len;
};
struct node2{
int value;
};
int cmp(const node& a, const node& b){
return a.len<b.len;
}
node2 parent[120];
void MakeSet(){
for(int i=1;i<=110;i++){
parent[i].value = i;
}
}
int Find(int x){
while(parent[x].value != x){
int tmp = parent[x].value;
parent[x].value = parent[parent[x].value].value; //路径压缩,将路径中每个节点直接连到根上
x=tmp;
}
return parent[x].value;
}
void Union(int x,int y){
int xroot = Find(x);
int yroot = Find(y);
if(xroot == yroot) return;
else{
parent[xroot].value=yroot;
}
}
int n,len;
int ans=0;
node edge[maxn];
void Kruskal(){ // Kruskal 算法
int edgenum=0;
for(int i=0;i<len&& edgenum!=n-1;i++){
if(Find(edge[i].a)!=Find(edge[i].b)){
ans+=edge[i].len;
Union(edge[i].a,edge[i].b);
edgenum++;
}
}
}
int main(){
while(scanf("%d",&n)!=EOF&&n){
len=n*(n-1)/2;
ans=0;
for(int i=0;i<len;i++){
scanf("%d%d%d",&edge[i].a,&edge[i].b,&edge[i].len);
}
sort(edge,edge+len,cmp);
MakeSet();
Kruskal();
printf("%d\n",ans);
}
return 0;
}