【bzoj2961】 共点圆

http://www.lydsy.com/JudgeOnline/problem.php?id=2961 (题目链接)

题意

  按照一定的顺序给出一些圆和一些点,对于每一个点问是否在所有圆内。

Solution

  我算是明白计算几何题是有多蛋疼了。

  圆包含点$(x_0,y_0)$的条件:$$x*x+y*y>=(x-x_0)*(x-x_0)+(y-y_0)*(y-y_0)$$

$$-2x_0+x_0^2+y_0^2<=2y_0y$$

  题目只说圆心的纵坐标大于$0$,气的我吐出一口老血。所以根据$y_0$的正负,分类讨论,每种情况都是一个半平面,直线的斜率为$-x_0/y_0$,然后我们维护一个上凸包和一个下凸包对询问进行更新,CDQ分治求解就可以了。

细节

  各种细节蛋疼死了,横坐标相等斜率特判,而且是有向线段的斜率两个点的顺序不能乱写。一开始还把斜截式写成了一般式搞了半天我就说怎么不对。

代码

// bzoj2961
#include<algorithm>
#include<iostream>
#include<cstdlib>
#include<cstring>
#include<cstdio>
#include<cmath>
#define LL long long
#define LD long double
#define inf 1e40
#define eps 1e-10
#define Pi acos(-1.0)
#define free(a) freopen(a".in","r",stdin),freopen(a".out","w",stdout)
using namespace std;

const int maxn=500010;
int n,qu[maxn],st[maxn],ans[maxn];
struct data {LD x,y,k;int op,id;}q[maxn],nq[maxn];

bool cmpk(data a,data b) {return a.k<b.k;}
bool cmpid(data a,data b) {return a.id<b.id;}
LD slope(data a,data b) {
	return fabs(a.x-b.x)<=eps ? inf*(a.y<b.y ? 1 : -1) : (b.y-a.y)/(b.x-a.x);  //mdzz一定要写a.y<b.y而不是a.y>b.y,有向线段
}
LD dis(int x,int y) {
	return (q[x].x-q[y].x)*(q[x].x-q[y].x)+(q[x].y-q[y].y)*(q[x].y-q[y].y);
}
void solve(int l,int r) {
	if (l==r) return;
	int mid=(l+r)>>1,l1=l,l2=mid+1,top=0,h=1,t=0;
	for (int i=l;i<=r;i++) q[i].id<=mid ? nq[l1++]=q[i] : nq[l2++]=q[i];
	for (int i=l;i<=r;i++) q[i]=nq[i];
	solve(l,mid);
	for (int i=l;i<=mid;i++) if (!q[i].op) {
			while (top>1 && slope(q[st[top-1]],q[st[top]])<slope(q[st[top]],q[i])+eps) top--;
			st[++top]=i;
			while (h<t && slope(q[qu[t-1]],q[qu[t]])>slope(q[qu[t]],q[i])-eps) t--;
			qu[++t]=i;
		}
	for (int i=mid+1;i<=r;i++) if (q[i].op) {
			if (q[i].y<0) {
				while (top>1 && slope(q[st[top-1]],q[st[top]])<q[i].k) top--;
				if (top) ans[q[i].id]&=(dis(i,st[top])<=dis(st[top],0)+eps);   //判断条件一定要加
			}
			else {
				while (h<t && slope(q[qu[h]],q[qu[h+1]])<q[i].k) h++;
				if (h<=t) ans[q[i].id]&=(dis(i,qu[h])<=dis(qu[h],0)+eps);   //判断条件一定要加
			}
		}
	solve(mid+1,r);
	for (int i=l,j=mid+1,k=l;i<=mid || j<=r;) {
		if (j>r || (i<=mid && q[i].x<q[j].x)) nq[k++]=q[i++];
		else nq[k++]=q[j++];
	}
	for (int i=l;i<=r;i++) q[i]=nq[i];
}
int main() {
	scanf("%d",&n);
	for (int i=1;i<=n;i++) {
		scanf("%d%Lf%Lf",&q[i].op,&q[i].x,&q[i].y);
		if (q[i].op) q[i].k=-q[i].x/q[i].y;
		ans[i]=1;q[i].id=i;
	}
	sort(q+1,q+1+n,cmpk);
	solve(1,n);
	sort(q+1,q+1+n,cmpid);
	for (int flag=0,i=1;i<=n;i++) {
		if (q[i].op) puts(flag && ans[q[i].id] ? "Yes" : "No");
		else flag=1;
	}
	return 0;
}

 

转载于:https://www.cnblogs.com/MashiroSky/p/6513750.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值