2018/12/04 PAT刷题 L1-009 N个数求和 java

看了好久的代码, 终于看懂了:

import java.util.Scanner;

public class Main {
    public static void main(String[] args) {
        Scanner sc = new Scanner(System.in);
        int n = sc.nextInt();
        String[] s = new String[n];
        long fm2 = 1;
        long sum = 0;
        s[0] = sc.next();
        for (int i = 1; i < n; i++) {
            s[i] = sc.next();
            if (fm2 % getfm(s[i]) != 0) { // 防止直接分母全部相乘超范围
                fm2 *= getfm(s[i]); // 如果原来初始化为1的分母变量fm2 不能整除 下一个数s[i]的分母, 那么就将s[i]的分母乘以fm2, 更新分母变量
            }
        }
        sc.close();
        for (int i = 0; i < n; i++) {
            sum += getfz(s[i]) * fm2 / getfm(s[i]);
        } // sum是两个分母的最大公约数

        /*
         * 大致分类 ① 分母等于0 ②分子(绝对值)小于分母 包括正数和负数 ③分子等于分母 ④分子(绝对值)大于分母 包括正数和负数 第④种情况就涉及到带分数
         */
        if (sum == 0) {
            System.out.println(0);
        } else {
            if (Math.abs(sum) < fm2) {
                if (gcd(sum, fm2) == 1) {
                    System.out.printf("%d/%d\n", sum, fm2);
                } else {
                    System.out.printf("%d/%d\n", sum / gcd(sum, fm2), fm2 / gcd(sum, fm2));
                }
            } else if (Math.abs(sum) == fm2) {
                if (sum < 0) {
                    System.out.println(-1);
                } else {
                    System.out.println(1);
                }
            } else {
                if (sum < 0) {
                    sum = -sum;
                    long x = sum / fm2;
                    if (sum % fm2 != 0) {
                        System.out.printf("-%d -%d/%d\n", x, ((sum - fm2 * x) / gcd((sum - fm2 * x), fm2)),
                                (fm2 / gcd((sum - fm2 * x), fm2)));
                        // 分子分母同时除以最大公倍数
                    } else {
                        System.out.println(-x);
                    }
                } else {
                    long x = sum / fm2;
                    if (sum % fm2 != 0) {
                        System.out.printf("%d %d/%d\n", x, ((sum - fm2 * x) / gcd((sum - fm2 * x), fm2)),
                                (fm2 / gcd((sum - fm2 * x), fm2)));
                        // 分子分母同时除以最大公倍数
                    } else {
                        System.out.println(x);
                    }
                }
            }
        }
    }

    public static long getfz(String s) {
        String[] s1 = s.split("/");
        return Long.parseLong(s1[0]);
    }

    public static long getfm(String s) {
        String[] s1 = s.split("/");
        return Long.parseLong(s1[1]);
    }

    public static long gcd(long a, long b) {
        // 求最大公约数
        if (a < 0) {
            a = -a;
        }
        if (b < 0) {
            b = -b;
        }
        if (a < b) {
            long temp = a;
            a = b;
            b = temp;
        }
        if (a % b == 0) {
            return b;
        } else {
            return gcd(b, a % b);
        }
    }
}

 

转载于:https://www.cnblogs.com/huangZ-H/p/10066422.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值