(二)拟牛顿条件

牛顿法需要计算目标函数的二阶偏导数,计算复杂,而且有时目标函数的海森矩阵无法保持正定,因此有人提出了拟牛顿法:一种类似牛顿法的方法。思路是不用二阶偏导数就构造出可以近似海森矩阵的正定对称阵。拟牛顿条件是指出了用来近似的矩阵应该满足的条件。

 

转载于:https://www.cnblogs.com/Aaron12/p/9033200.html

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
牛顿法(Quasi-Newton method)是一种优化算法,用于求解无约束最优化问题。它通过利用目标函数的一阶和阶导数信息来逼近牛顿法的迭代过程,从而减少计算Hessian矩阵的开销。下面是一个使用Python实现的牛顿法示例: ```python import numpy as np def objective_function(x): return x**4 - 3*x**3 + 2 def gradient(x): return 4*x**3 - 9*x**2 def quasi_newton_method(x0, max_iter=100, tol=1e-6): x = x0 H = np.eye(len(x0)) # 初始化近似的Hessian矩阵为单位矩阵 iter_count = 0 while iter_count < max_iter: g = gradient(x) d = -np.dot(H, g) # 计算搜索方向 # 利用线搜索确定步长 alpha alpha = 1.0 c = 0.5 # Armijo条件中的常数 rho = 0.5 # 步长缩放系数 while objective_function(x + alpha*d) > objective_function(x) + c*alpha*np.dot(g, d): alpha *= rho x_new = x + alpha*d if np.linalg.norm(x_new - x) < tol: break # 更新近似的Hessian矩阵 s = x_new - x y = gradient(x_new) - g H = H + np.outer(y, y) / np.dot(y, s) - np.outer(np.dot(H, s), np.dot(H, s)) / np.dot(s, np.dot(H, s)) x = x_new iter_count += 1 return x # 示例使用 x0 = 1.0 # 初始点 x_opt = quasi_newton_method(x0) print("Optimal solution:", x_opt) print("Objective value at optimal solution:", objective_function(x_opt)) ``` 上述示例中,`objective_function`代表目标函数,`gradient`代表梯度函数(目标函数的一阶导数),`quasi_newton_method`代表牛顿法的实现。在示例使用部分,我们指定初始点`x0`,然后调用`quasi_newton_method`函数得到最优解和最优解对应的目标函数值。 请注意,这只是一个简单的示例,牛顿法有不同的变体和优化。具体实现可能因问题而异,可以根据实际情况进行修改和优化。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值