Learning Vector Quantization

学习矢量量化

k近邻的缺点是你需要维持整个数据集的训练。

学习矢量量化算法(简称LVQ)是一种人工神经网络算法,它允许你选择要挂在多少个训练实例上,并精确地了解这些实例应该是什么样子。

 

LVQ的表示是一个codebook 向量的集合。这些都是在开始时随机选择的,并根据学习算法的多次迭代对训练数据集进行最佳的总结。

在学习之后,codebook vector可以用来做出像k近邻那样的预测。通过计算每个codebook vector和新数据实例之间的距离,可以找到最相似的邻居(最佳匹配的codebook vector)。然后将最佳匹配单元的类值或(回归的实际值)作为预测返回。

如果您将数据重新缩放到具有相同的范围(比如0到1之间),就可以获得最佳结果。

如果发现KNN在数据集上提供了良好的结果,那么可以尝试使用LVQ来减少存储整个训练数据集的内存需求。

转载于:https://www.cnblogs.com/ytxwzqin/p/9053863.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值