arcgis中如何导出奥维可识别的图_ArcGIS ENVI中土地分类格式互转、土地利用转移矩阵、变化图谱计算详解...

ee8bbce9dd2eb19714eb6a33d05f96a5.gif

01 ENVI、ArcGIS格式互换

1.1 ENVI分类格式转TIF

ENVI分类格式使用File下面的Save as另存为TIF格式:

79bc99525742b77145d1cb9b9d5ecb25.png

42294bf35a3df9029d94182830beae54.png

对于部分5.3版本可能会出现报错:

302f126017225a8576917fa372be772f.png

那我们可以使用Classic模式:

bcee508d6fddf0485859bb55978a8b01.png

然后使用ArcGIS打开:但是可能会发现分类图像的值域范围可能和ENVI不一样:

7dd6e687757d868e38e9ebb8a8dc415e.png

然后我们符号系统里选唯一值:

c947a4152e6bbf2022c6032f176da222.png

这样值域范围就对应了:

09bb383d32f0e9d45db5096965e3cfa5.png

还可以设置标签名称:

c849091e301385067ee848c5a955798f.png

17edc45703122f5e039b217e11162162.png

1.2 ArcGIS Coverage格式转TIF

对于Coverage这种格式,ArcMAP打开:

706dd51f4501f094d6760db5d9aa5164.png

86904c9f08d43fb03e61e3f300df1e84.png

6a3e7c855b5b8b519bc540a62717bc13.png

5eb05c56d054c59ae52bb63322a5469b.png

右键导出:

b0bfcbc928499c829c4ab394e198be17.png

2319070891c48a45c6161883d16c4c28.png

ENVI打开后:右键新建色带

ff54fa367a73a02237b6d690d589ce64.png

注意需要将默认色带删除,自己重新建立色带并设置为唯一值对应:

5a49c8b6863986ba2e1ae75365163a2f.png

导出为ENVI标准分类格式:

21a491a3dcc5be1337afbf72a0b1b084.png

1.3 其他分类读取

对应清华大学GCL10或者30,我们加载数据后同样的操作即可:

45190757285e95eaa480b2b0b67a4bec.png

02 关于拼接、重分类

下面我们以从中国科学院地理科学与资源研究所下载各省土地利用数据为例进行操作演示:

下图是下载的1970年代末期(1980年)中国土地利用现状遥感监测数据:

c30f2478a2fda24fffa4689b2489f8ee.png

全部加载后:

fd1fdff56e27bf0752011ba621dcb14f.png

因为各省数据的名称都是一样的,直接拼接容易报错或者不出结果,我们先把数据图层进行重命名:

4ea950024f77d1c5e6289c6f099bd604.png

镶嵌至新栅格:

56caeb1db40cd024c5232066f8457867.png

拼接完成后选唯一值:

c54ab6a5b008f88febf78ca1bd15f007.png

拼接后的结果:

142d9a2e10c8c5455f21af03cac763b2.png

这是这套数据的空间参数:

c7518a72dad1005f7dea30f97fab5fd7.png

这是这套数据的分类编码:

7151a5eb0d7e900fbf75c047305238c0.png

我们下面按照一级编码对这个数据进行重分类,注意新旧值的对应关系:

7a7c8b24edb309505cb547affdfd687a.png

重分类后的结果:

4a09c41fba15ddca414232fd0882e32b.png

03 转移矩阵制作

3.1 ArcGIS里操作:

上面我们把1980年的数据进行了重分类,接下来我们按照同样的方法来处理2018年的数据:

58f27cd70677abe28af39c4b33b6356a.png

两期数据都处理好了,然后进行栅格转矢量,建议不勾选简化面:

88f8c49e16a3a3b62d5dee3688b5f40e.png

两期数据的矢量进行相交分析:

64ef9f854ceaab7fa3c1914ae38a0cbe.png

相交分析的结果添加面积字段:

5fec0320a20439531beec4ef25392a2b.png

计算几何面积:

de9bc6c9c9789a23df96e782aca235ee.png

3cd73ec7804aaf96e8a2f05e4470c8ce.png

然后使用EXCEL打开相交分析数据的.dbf文件,创建数据透视表:

1d714d666bc1a59443892f391370f706.png

拖动code1到列标签,拖动code2到行标签,area到数值求和:

82319e8125b31647a2553dfba8d55d46.png

数据稍加整饰即可得到转移矩阵,但是EXCEL读取数据的行数有限,写入最大行数是 1048576,本次数据已经远超这个数值,因此这样算出来是不准的,但是这个方法适用于数据量比较小的分类结果。

对于面特别多的数据,可以先进行融合操作,根据分类字段将面合并,然后进行相交分析:

66473a1e727dfba91f42a3e639381acc.png

但是此方法步骤繁琐,下面我们介绍在ENVI下的处理方法。

3.2 ENVI里操作:

ENVI里操作需要满足三个条件:1.ENVI标准分类格式 2.数据坐标投影一致 3.数据行列数一致。

首先我们打开数据后查看元数据后的行列数,发现两者的行列数并不一致:

296453335536b51a2a645ecb8e1feaaf.png

接下来我们使用layerstack工具,将这个两个数据组合在一起,但是因为这个数据的坐标系统ENVI并不识别:

ee257b280e0360893e170eacade366d5.png

为了方便后续操作我们将这个坐标系统新建入库:

427baab3b20d839eb15541f3ac410cc5.png

1f951698f8a7dc238d42412334f970bc.png

接着使用layerstack工具,导入这两个数据,坐标系选择我们刚才新建的,注意重采样方法,选最邻近,因为这是土地里分类数据,

最邻近可以不改变原有分类数据的像元值,假如选双线性,那么,数据中某两个像元的值一个是3一个是5,可能会插值出一个4,这样每个类别的个数就改变了。

887438ffc30f4cfd381bf35d17fa7515.png

注意layerstack的时候,选第二个可以只保留两个数据的公共相交区域:

b5d0eab5e39b867cb4c248525d5d3fe5.png

通过layerstack工具,两个数据的行列数一致,现在将每个数据导出,可以仍然layerstack,选择spectral subset,选中其中一个数据先导出,同样的方法导出另一个数据:

220420cd70465a14335fb19b496246ac.png

导出的数据背景值可能不是0,这种情况需要做一下掩膜,首先构建掩膜文件,我们先构建1980的MASK:

5d636df96fb680ab4f745cb43f0c6b07.png

381859b911cfe71e5d29eefc64508b1a.png

我们的数据有效值域是1-7:

7a0aa2f937ac030d87c26cbdfc60a8f5.png

然后对1980年的数据(layerstack导出的数据)进行应用掩膜:

338535f8c08140583b1d522d9f26255b.png

右键新建色带后导出Class格式:

05205a978171f65d0118f1b5f6970826.png

7c905f70e22535c0934bef0bd2276cbd.png

可以编辑头文件对导出的Class格式编辑分类名称:

331588eecedb5127c337b61219492b37.png

对于某些5.3版本可能会报错,我们可以用classic模式进行编辑:

529a0ce64b4a2ecce2c83e5aec53f3bd.png

58cdfe3726b632008f35429cf7aa3025.png

9b856fb315b13c3693b31af2bae481b3.png

设置忽略背景值为0:

456190a1d1436aa2094b8800c1eb697f.png

同样的操作对2018年的数据进行编辑,然后两者数据的都统一了:

37a31967aa090145250ac98407bc6176.png

接下来我们进行变化检测,计算转移矩阵,由于ENVI计算出的转移矩阵是反向的,因此我们前时相选2018,后时相选1980,这样计算出来的转移矩阵才符合平常的习惯:

865978a08bfa145b4467eceec9d3a903.png

c9e565661a8c3c2f509711c559715989.png

0a7ffde427589964f5a47f32ff0480db.png

0685d4ed7585d55810c9627ace0c7e0a.png

导出TXT:

cc9d7119b5dcde43179bcdf7aab5485e.png

EXCEL导入TXT:

5584110dae72fa8a943cfe69e8f84bec.png

86a6256cb59c640261d4e0a8f2d82a7f.png

稍加整饰即可:

9f40cac0985370abdf26df9f2224dfe9.png

04 变化图谱

我们以刚才两期数据为例,来计算一下建设用地的变化图谱,比如计算下1980-2018年间,其他地类转为建设用地的分布:

使用地图代数工具,输入下列公式,该公式是将1980所有像元乘以10,这样比如耕地从1变成10,再加上2018,那么耕地保持不变的像元会变成11,耕地转成林地的像元变成12,…

a4b57100f8509f360aa00d14a0a0af09.png

计算完成后在符号系统里只显示与转入建设用地相关的值,并附上属性标签:

c4e2777d87083d0d5d8b116d2b1ce4e5.png

7b06d8cf69e35bbaa311f3f981cc67ae.png

可以切换到布局视图插入多个数据框:

9f0cfa2396b0bef3baf0469923d97ba0.png

调整数据框位置;

e661ec04899a196a9f981adfc9729aaa.png

复制数据到每个数据框:

6c03ccca9af4da6f628ba80a8aa2ef51.png

81eaa0ae787d5d7328fab9d03e63e272.png

接下来插入图例,指北针、比例尺这些要素就可以出图了:

39294a32f2210bfdc31ba4554ca7aff2.png

- END -

利用ArcGIS做一张"三调"土地利用现状图 ArcGIS在土地整理中的小案例汇总 ArcGIS从0开始,你需要了解的17个制图小技巧 7.72GB ARCGIS  ERDAS  ENVI干货教程网盘下载 基于Sentinel-2(哨兵2)的杞县大蒜提取试验

285ab06df7c5ece286d3ca61290cbc2c.png

已标记关键词 清除标记
表情包
插入表情
评论将由博主筛选后显示,对所有人可见 | 还能输入1000个字符
相关推荐
<p> <strong><span style="font-size:18px;"><span style="background-color:#ffff00;">注:   全新上架。<br /> 全新录制,整合3年来学员的常见问题。课程2020年全新上架。将近90课时。内容丰富,可涵盖所有常见工作的问题。同时保留老版本课程,详情请看课程目录及以下课程概述。     <br /> </span></span><span style="font-size:18px;"><span><br /> 课程目录第一章第三节(课程资料(PPt与操作数据等)),是整套课程的课件PPT,资料、课程操作数据等的下载地址</span></span></strong> </p> <p style="text-align:left;"> <span style="color:#333333;"><span style="font-size:18px;"><strong>    本课程经过全面的再录制,更全面、更系统化,</strong></span><u><span style="color:#ff0000;font-size:18px;"><strong>支持随到随学,免费试学</strong></span></u><span style="font-size:18px;"><strong>。</strong></span><span style="font-size:18px;"><strong>利用ArcGIS10.6文版教学,试用于ArcGIS10.0、10.1、10.2、10.3、10.4、10.5、10.6、10.7、10.8系列,让零基础或者掌握不全面的人快速系统地了解ArcGIS的应用,让学习者对ArcGIS整体认识、空间数据信息采集、属性表操作、拓扑、空间数据可视化、出、数据更新、投影变换与格式转换、矢量、栅格数据空间分析有一个全新的认识.</strong></span></span> </p> <p> <span style="color:#333333;"><strong> </strong></span> </p> <p> <span style="color:#333333;"><strong><br /> </strong></span> </p> <p> <span style="color:#333333;"><strong><img src="https://img-bss.csdnimg.cn/202104280537537493.jpg" alt="" /><img src="https://img-bss.csdnimg.cn/202104280538027266.jpg" alt="" /><img src="https://img-bss.csdnimg.cn/202104280538085890.jpg" alt="" /><img src="https://img-bss.csdnimg.cn/202104280538149666.jpg" alt="" /><img src="https://img-bss.csdnimg.cn/202104280538227842.jpg" alt="" /><img src="https://img-bss.csdnimg.cn/202104280538383414.jpg" alt="" /><img src="https://img-bss.csdnimg.cn/202104280538437013.jpg" alt="" /><img src="https://img-bss.csdnimg.cn/202104280538495171.jpg" alt="" /><img src="https://img-bss.csdn.net/201912201608091683.jpg" alt="" /><img src="https://img-bss.csdn.net/201912201608198402.jpg" alt="" /><img src="https://img-bss.csdn.net/201912201608273798.jpg" alt="" /><br /> </strong></span> </p>
©️2020 CSDN 皮肤主题: 数字20 设计师:CSDN官方博客 返回首页