偏微分方程求解与连续性分析

题目

问题 2.
(a) 在区域 { (x,y)≠(0,0)} \{(x,y) \neq (0,0)\} { (x,y)=(0,0)} 中,求以下各方程的通解:
xux+yuy=0,x u_x + y u_y = 0,xux+yuy=0,
xux−yuy=0;x u_x - y u_y = 0;xuxyuy=0;
这些解在 (0,0) (0,0) (0,0) 处连续的条件是什么?解释这两种情况的区别。

(b) 在区域 { (x,y)≠(0,0)} \{(x,y) \neq (0,0)\} { (x,y)=(0,0)} 中,求以下各方程的通解:
yux+xuy=0,y u_x + x u_y = 0,yux+xuy=0,
yux−xuy=0;y u_x - x u_y = 0;yuxxuy=0;
这些解在 (0,0) (0,0) (0,0) 处连续的条件是什么?解释这两种情况的区别。

问题 3. 以同样的方式考虑方程:
(x2+1)yux+(y2+1)xuy=0;(x^2+1) y u_x + (y^2+1) x u_y = 0;(x2+1)yux+(y2+1)xuy=0;
(x2+1)yux−(y2+1)xuy=0.(x^2+1) y u_x - (y^2+1) x u_y = 0.(x2+1)yux(y2+1)xuy=0.


解决问题

问题 2(a)

考虑方程:

  1. xux+yuy=0 x u_x + y u_y = 0 xux+yuy=0
  2. xux−yuy=0 x u_x - y u_y = 0 xuxyuy=0

在区域 { (x,y)≠(0,0)} \{(x,y) \neq (0,0)\} { (x,y)=(0,0)} 中求解。

通解:

  • 对于方程 xux+yuy=0 x u_x + y u_y = 0 xux+yuy=0
    特征方程为 dxx=dyy \frac{dx}{x} = \frac{dy}{y} xdx=ydy,积分得 ln⁡∣x∣=ln⁡∣y∣+c \ln|x| = \ln|y| + c lnx=lny+c,即 xy=常数 \frac{x}{y} = \text{常数} yx=常数
    因此,通解为:
    u(x,y)=f(xy) u(x,y) = f\left(\frac{x}{y}\right) u(x,y)=f(yx)
    其中 f f f 是任意可微函数。

  • 对于方程 xux−yuy=0 x u_x - y u_y = 0 xuxyuy=0
    特征方程为 dxx=dy−y \frac{dx}{x} = \frac{dy}{-y} xdx=ydy,积分得 ln⁡∣x∣=−ln⁡∣y∣+c \ln|x| = -\ln|y| + c lnx=lny+c,即 xy=常数 xy = \text{常数} xy=常数
    因此,通解为:
    u(x,y)=g(xy) u(x,y) = g(xy) u(x,y)=g(xy)
    其中 g g g 是任意可微函数。

(0,0) (0,0) (0,0) 处连续的条件:

  • 对于解 u(x,y)=f(xy) u(x,y) = f\left(\frac{x}{y}\right) u(x,y)=f(yx)
    (x,y)→(0,0) (x,y) \to (0,0) (x,y)(0,0) 时,xy \frac{x}{y} yx 的行为依赖于路径(例如,沿 y=mx y = mx y=mxxy=1m \frac{x}{y} = \frac{1}{m}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值