题目
问题 2.
(a) 在区域 {
(x,y)≠(0,0)} \{(x,y) \neq (0,0)\} {
(x,y)=(0,0)} 中,求以下各方程的通解:
xux+yuy=0,x u_x + y u_y = 0,xux+yuy=0,
xux−yuy=0;x u_x - y u_y = 0;xux−yuy=0;
这些解在 (0,0) (0,0) (0,0) 处连续的条件是什么?解释这两种情况的区别。
(b) 在区域 {
(x,y)≠(0,0)} \{(x,y) \neq (0,0)\} {
(x,y)=(0,0)} 中,求以下各方程的通解:
yux+xuy=0,y u_x + x u_y = 0,yux+xuy=0,
yux−xuy=0;y u_x - x u_y = 0;yux−xuy=0;
这些解在 (0,0) (0,0) (0,0) 处连续的条件是什么?解释这两种情况的区别。
问题 3. 以同样的方式考虑方程:
(x2+1)yux+(y2+1)xuy=0;(x^2+1) y u_x + (y^2+1) x u_y = 0;(x2+1)yux+(y2+1)xuy=0;
(x2+1)yux−(y2+1)xuy=0.(x^2+1) y u_x - (y^2+1) x u_y = 0.(x2+1)yux−(y2+1)xuy=0.
解决问题
问题 2(a)
考虑方程:
- xux+yuy=0 x u_x + y u_y = 0 xux+yuy=0
- xux−yuy=0 x u_x - y u_y = 0 xux−yuy=0
在区域 { (x,y)≠(0,0)} \{(x,y) \neq (0,0)\} { (x,y)=(0,0)} 中求解。
通解:
-
对于方程 xux+yuy=0 x u_x + y u_y = 0 xux+yuy=0:
特征方程为 dxx=dyy \frac{dx}{x} = \frac{dy}{y} xdx=ydy,积分得 ln∣x∣=ln∣y∣+c \ln|x| = \ln|y| + c ln∣x∣=ln∣y∣+c,即 xy=常数 \frac{x}{y} = \text{常数} yx=常数。
因此,通解为:
u(x,y)=f(xy) u(x,y) = f\left(\frac{x}{y}\right) u(x,y)=f(yx)
其中 f f f 是任意可微函数。 -
对于方程 xux−yuy=0 x u_x - y u_y = 0 xux−yuy=0:
特征方程为 dxx=dy−y \frac{dx}{x} = \frac{dy}{-y} xdx=−ydy,积分得 ln∣x∣=−ln∣y∣+c \ln|x| = -\ln|y| + c ln∣x∣=−ln∣y∣+c,即 xy=常数 xy = \text{常数} xy=常数。
因此,通解为:
u(x,y)=g(xy) u(x,y) = g(xy) u(x,y)=g(xy)
其中 g g g 是任意可微函数。
在 (0,0) (0,0) (0,0) 处连续的条件:
-
对于解 u(x,y)=f(xy) u(x,y) = f\left(\frac{x}{y}\right) u(x,y)=f(yx):
当 (x,y)→(0,0) (x,y) \to (0,0) (x,y)→(0,0) 时,xy \frac{x}{y} yx 的行为依赖于路径(例如,沿 y=mx y = mx y=mx,xy=1m \frac{x}{y} = \frac{1}{m}