[收藏]无刷新偷天气预报

无刷新获取天气预报的代码实现
博客给出了一段无刷新获取天气预报的代码。通过 JavaScript 创建 XMLHTTP 对象,尝试从指定 URL 获取数据,根据不同状态更新目标对象内容。还包含 VBScript 函数用于处理字节数据。代码可实现无刷新偷取天气预报信息。
None.gif<script language=javascript>
None.gif
<!--
None.gif
function GetSource( url, DestObj )
None.gif{
None.gif    
var xmlhttp = new ActiveXObject("Microsoft.XMLHTTP");
None.gif
try
None.gif{
None.gifxmlhttp.onreadystatechange 
= function(){
None.gif
if( xmlhttp.readyState == 4 )
None.gif{
None.gif
if( xmlhttp.status == 200 )
None.gif{
None.gifDestObj.innerHTML 
= Bytes2BSTR( xmlhttp.responseBody );
None.gif
if( xmlhttp.responseText == "" )
None.gif{
None.gifDestObj.innerText 
= "错误的服务";
None.gif}
None.gif}
None.gif
else
None.gif{
None.gifDestObj.innerText 
= "由于网络状况导致服务失败";
None.gif}
None.gif}
None.gif
else
None.gif{
None.gifDestObj.innerText 
= "服务加载中dot.gif";
None.gif}
None.gif}
None.gifxmlhttp.open(
"GET", url, true);
None.gifxmlhttp.send();
None.gif}
None.gif
catch(ex)
None.gif{
None.gifDestObj.innerText 
= "加载错误!";
None.gif}    
None.gif}
None.gif
None.gifGetSource(
"weather.asp?id=" + Math.random(), document.getElementById("cnweather"));
None.gif
//-->
None.gif
</script>
None.gif
None.gif<script language=vbscript>
None.gif
Function Bytes2BSTR( vIn )
None.gif
Dim strReturn
None.gif
Dim i
None.gif
= 0
None.gif    strReturn 
= ""
None.gif
    
None.gif    
For i = 1 To LenB(vIn)
None.gif        ThisCharCode 
= AscB(MidB(vIn,i,1))
None.gif        
If ThisCharCode < &H80 Then
None.gif            strReturn 
= strReturn & Chr(ThisCharCode)
None.gif        
Else
None.gif            NextCharCode 
= AscB(MidB(vIn,i+1,1))
None.gif            strReturn 
= strReturn & Chr(CLng(ThisCharCode) * &H100 + CInt(NextCharCode))
None.gif            i 
= i + 1
None.gif        
End If
None.gif    
Next
None.gif    Bytes2BSTR 
= strReturn
None.gif
None.gif
End Function
None.gif
</script>
None.gif

转载于:https://www.cnblogs.com/sxbamboo/archive/2005/07/17/194399.html

内容概要:本文介绍了一个基于MATLAB实现的无人机三维路径规划项目,采用蚁群算法(ACO)与多层感知机(MLP)相结合的混合模型(ACO-MLP)。该模型通过三维环境离散化建模,利用ACO进行全局路径搜索,并引入MLP对环境特征进行自适应学习与启发因子优化,实现路径的动态调整与多目标优化。项目解决了高维空间建模、动态障碍规避、局部最优陷阱、算法实时性及多目标权衡等关键技术难题,结合并行计算与参数自适应机制,提升了路径规划的智能性、安全性和工程适用性。文中提供了详细的模型架构、核心算法流程及MATLAB代码示例,涵盖空间建模、信息素更新、MLP训练与融合优化等关键步骤。; 适合人群:具备一定MATLAB编程基础,熟悉智能优化算法与神经网络的高校学生、科研人员及从事无人机路径规划相关工作的工程师;适合从事智能无人系统、自动驾驶、机器人导航等领域的研究人员; 使用场景及目标:①应用于复杂三维环境下的无人机路径规划,如城市物流、灾害救援、军事侦察等场景;②实现飞行安全、能耗优化、路径平滑与实时避障等多目标协同优化;③为智能无人系统的自主决策与环境适应能力提供算法支持; 阅读建议:此资源结合理论模型与MATLAB实践,建议读者在理解ACO与MLP基本原理的基础上,结合代码示例进行仿真调试,重点关注ACO-MLP融合机制、多目标优化函数设计及参数自适应策略的实现,以深入掌握混合智能算法在工程中的应用方法。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符  | 博主筛选后可见
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值