不得不说,最近我特别爱刷这种区间DP题,因为这个跟其他的DP有些不一样的地方,主要是有一定的套路,就是通过小区间的状态更新大区间,从而得到原题给定区间的最优解。
$但是$ 这个题应该跟$石子合并$差不多,不同的几点就是一个是小区间加小区间,一个是小区间$*$小区间。实际上本质都是一样的,但是要注意一些坑。$
$坑点$:
比如说首先要断环为链, 这个比较简单,然后就是还要注意区间的左右端点和断点判断上的问题。
代码:
#include<bits/stdc++.h> using namespace std; int n,e[300],s[300][300],maxn=-1; int main(){ cin>>n; for(int i=1;i<=n;i++){cin>>e[i];e[i+n]=e[i];} //珠子由环拆分为链,重复存储一遍 for(int i=2;i<2*n;i++){ for(int j=i-1;i-j<n&&j>=1;j--){//从i开始向前推 for(int k=j;k<i;k++)//k是项链的左右区间的断点 s[j][i]=max(s[j][i],s[j][k]+s[k+1][i]+e[j]*e[k+1]*e[i+1]); //状态转移方程:max(原来能量,左区间能量+右区间能量+合并后生成能量) if(s[j][i]>maxn)maxn=s[j][i];//求最大值 } } cout<<maxn; return 0; }