BZOJ2436: [Noi2011]Noi嘉年华

2436: [Noi2011]Noi嘉年华

Time Limit: 10 Sec  Memory Limit: 128 MB
Submit: 720  Solved: 474
[Submit][Status][Discuss]

Description

NOI2011 在吉林大学开始啦!为了迎接来自全国各地最优秀的信息学选手,
吉林大学决定举办两场盛大的 NOI 嘉年华活动,分在两个不同的地点举办。每
个嘉年华可能包含很多个活动,而每个活动只能在一个嘉年华中举办。 
现在嘉年华活动的组织者小安一共收到了 n个活动的举办申请,其中第 i 个
活动的起始时间为 Si,活动的持续时间为Ti。这些活动都可以安排到任意一个嘉
年华的会场,也可以不安排。 
小安通过广泛的调查发现,如果某个时刻,两个嘉年华会场同时有活动在进
行(不包括活动的开始瞬间和结束瞬间),那么有的选手就会纠结于到底去哪个
会场,从而变得不开心。所以,为了避免这样不开心的事情发生,小安要求不能
有两个活动在两个会场同时进行(同一会场内的活动可以任意进行)。 
另外,可以想象,如果某一个嘉年华会场的活动太少,那么这个嘉年华的吸
引力就会不足,容易导致场面冷清。所以小安希望通过合理的安排,使得活动相
对较少的嘉年华的活动数量最大。 
此外,有一些活动非常有意义,小安希望能举办,他希望知道,如果第i 个
活动必须举办(可以安排在两场嘉年华中的任何一个),活动相对较少的嘉年华
的活动数量的最大值。

Input

 

输入的第一行包含一个整数 n,表示申请的活动个数。 
接下来 n 行描述所有活动,其中第 i 行包含两个整数 Si、Ti,表示第 i 个活
动从时刻Si开始,持续 Ti的时间。

Output


输出的第一行包含一个整数,表示在没有任何限制的情况下,活动较少的嘉
年华的活动数的最大值。 
接下来 n 行每行一个整数,其中第 i 行的整数表示在必须选择第 i 个活动的
前提下,活动较少的嘉年华的活动数的最大值。

 

Sample Input


5
8 2
1 5
5 3
3 2
5 3

Sample Output

2
2
1
2
2
2

HINT

在没有任何限制的情况下,最优安排可以在一个嘉年华安排活动 1, 4,而在

另一个嘉年华安排活动 3, 5,活动2不安排。

1≤n≤200 0≤Si≤10^9

1≤Ti≤ 10^9
思路{

  这道题真是火得冒烟,劲得不行.....这个DP考场上本蒟蒻怎么可能想得出来...

  先离散化一下....

  对于这种2种元素限定一个结果,考虑固定一个元素.设 $Pre_i,_j$ 表示从 $1$ 到 $i$ 的区间选 $j$ 个在一个嘉年华的另一个嘉年华的能拥有的最大值.

  转移 Pre [ i ] [ j ]=max ( Pre[ k ] [ j ] +sum [ k ] [ i ] , Pre [ k ] [ j - sum [ k ] [ i ] );其中sum [ i ] [ j ]为完全在$[ i , j]$区间内的区间个数.

  这个DP表示把这些区间放在哪个大区间内.

  这样的话可以解决第1问.

  我们再设一个$ Suf_i,_j $表示从 $i$ 到 $m$ 的区间选 $j$ 个在一个嘉年华的另一个嘉年华的能拥有的最大值.

   转移同上.

  再设$ dp_i,_j$为强制选取$ [ i , j ] $中区间的活动较少的嘉年华的活动数的最大值.这个是全局答案的.

  那 $ DP[i][j]=max(min( Pre[i-1][x]+Suf[j+1][y] ,x+y+Sum[x][y])) $

  表示选取一个作为最优解.由于$Pre$数组,$Suf$数组和$x , y$一一对应,所以不用在另外一边+Sum.

  发现这个东东是单峰的,直接用指针扫一下.

  最后的答案就比较好求了....

}

#include<bits/stdc++.h>
#define il inline
#define RG register
#define ll long long
#define db double
#define N 1010
using namespace std;
int sub[N*2],sum[N][N],pre[N][N],suf[N][N],dp[N][N],n,sz;
struct seg{
  int l,r;
  void read(){scanf("%d%d",&l,&r);r+=l;sub[++sub[0]]=l;sub[++sub[0]]=r;}
  void Modify(){
    l=lower_bound(sub+1,sub+sz+1,l)-sub;
    r=lower_bound(sub+1,sub+sz+1,r)-sub;
  }
}a[N];
void init(){
  scanf("%d",&n);
  for(int i=1;i<=n;++i)a[i].read();
  sort(sub+1,sub+sub[0]+1);
  sz=unique(sub+1,sub+sub[0]+1)-sub-1;
  for(int i=1;i<=n;++i)a[i].Modify();
}
int calc(int l,int r,int x,int y){
  return min(x+y+sum[l][r],pre[l][x]+suf[r][y]);
}
void work(){
  memset(suf,-127/3,sizeof(suf));memset(pre,-127/3,sizeof(pre));
  memset(sum,0,sizeof(sum));
  pre[0][0]=0,suf[sz+1][0]=0;
  for(int h=1;h<=n;++h)
    for(int i=0;i<=a[h].l;++i)
      for(int j=a[h].r;j<=sz+1;++j)
	sum[i][j]++;
  for(int i=1;i<=sz;++i){
    for(int j=0;j<=n;++j)
      for(int k=0;k<i;++k){
	pre[i][j]=max(pre[k][j]+sum[k][i],pre[i][j]);
	if(j>=sum[k][i])pre[i][j]=max(pre[i][j],pre[k][j-sum[k][i]]);
      }
  }
  for(int i=sz;i;i--){
    for(int j=0;j<=n;++j)
      for(int k=i+1;k<=sz+1;++k){
	suf[i][j]=max(suf[k][j]+sum[i][k],suf[i][j]);
	if(j>=sum[i][k])suf[i][j]=max(suf[i][j],suf[k][j-sum[i][k]]);
      }
  }ll Ans(0);
  for(int i=0;i<=n;++i)
    Ans=max(Ans,(ll)min(i,pre[sz][i]));
  cout<<Ans<<"\n";Ans=0;
  for(int i=1;i<=sz;++i)
    for(int j=i;j<=sz;++j){
      int y=n,tmp(-6666666);
      for(int x=0;x<=n;++x){
	for(;y>0;y--){
	  if(calc(i,j,x,y)>calc(i,j,x,y-1))
	    break;
	}
	tmp=max(tmp,calc(i,j,x,y));
      }
      dp[i][j]=tmp;
    }
  for(int h=1;h<=n;++h){
    Ans=0;
    for(int i=1;i<=a[h].l;i++)
      for(int j=a[h].r;j<=sz;++j)
	Ans=max(Ans,(ll)dp[i][j]);
    cout<<Ans<<"\n";
  }
}
int main(){
  init();
  work();
  return 0;
}

  

转载于:https://www.cnblogs.com/zzmmm/p/7507734.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值