周末女朋友不在家,打算做几题LeetCode的题目练练手,Pick One,随机抽中Palindrome Partitioning,题目如下:
Given a string s, partition s such that every substring of the partition is a palindrome.
Return all possible palindrome partitioning of s.
For example, given s = "aab",
Return
[
["aa","b"],
["a","a","b"]
]
思路很简单,构建子串的树,用回溯法,遍历每个子串,若当前子串是回文,则递归遍历子节点
Talk is cheap,show me the code.
1 class Solution { 2 public: 3 vector<vector<string>> partition(string s) { 4 vector<vector<string>> all_answer; 5 vector<string> answer; 6 backtracking(s, 0, all_answer, answer); 7 return all_answer; 8 } 9 void print(vector<vector<string>> all_answer) 10 { 11 for (auto it = all_answer.begin(); it != all_answer.end(); it++) 12 { 13 for (auto it2 = it->begin(); it2 != it->end(); it2++) 14 { 15 cout << *it2 << " "; 16 } 17 cout << endl; 18 } 19 } 20 private: 21 bool is_palindrome(string s) 22 { 23 unsigned int i = 0; 24 string::iterator it = s.begin(); 25 string::reverse_iterator it2 = s.rbegin(); 26 while (i < s.length()/2 && it != s.end()) 27 { 28 if (*it != *it2) 29 { 30 return false; 31 } 32 ++i; 33 ++it; 34 ++it2; 35 } 36 return true; 37 } 38 void backtracking(string s, unsigned int current, vector<vector<string>> &all_answer, vector<string> &answer) 39 { 40 if (current == s.length()) 41 { 42 all_answer.push_back(answer); 43 return; 44 } 45 else 46 { 47 for (unsigned int i = 1; i <= s.length()-current; ++i) 48 { 49 string current_str = s.substr(current, i); 50 if (is_palindrome(current_str)) 51 { 52 answer.push_back(current_str); 53 backtracking(s, current+i, all_answer, answer); 54 answer.pop_back(); //backtracking 55 } 56 } 57 } 58 } 59 };
提交,显示Accepted。看到问题列表中还有Palindrome Partitioning II,就想一鼓作气做完。题目如下:
Given a string s, partition s such that every substring of the partition is a palindrome.
Return the minimum cuts needed for a palindrome partitioning of s.
For example, given s = "aab"
,
Return 1
since the palindrome partitioning ["aa","b"]
could be produced using 1 cut.
乍一看比第一题还简单,但是明显测试用例会对时间复杂度做更高的要求,果然,直接改用第一题的方法,显示Time Limit Exceeded,通不过的测试用例是:
"fifgbeajcacehiicccfecbfhhgfiiecdcjjffbghdidbhbdbfbfjccgbbdcjheccfbhafehieabbdfeigbiaggchaeghaijfbjhi"
这个字符串长度100,于是修改算法,观察上一张图,分割的次数其实就是树的层级,之前用的回溯法是深度遍历,如果只需要最小的分割次数,那么只需要按层级遍历,找到一种分割即可返回。利用队列实现层级遍历,修改代码如下:
1 class Solution { 2 public: 3 int minCut_1(string s) { 4 queue<node> node_queue; 5 unsigned int current = 0; 6 node first_node = {0, 0, 0}; 7 node_queue.push(first_node); 8 while(node_queue.size()) 9 { 10 node current_check = node_queue.front(); 11 node_queue.pop(); 12 string current_substr = s.substr(current_check.curret_position, current_check.sub); 13 if (is_palindrome(current_substr)) 14 { 15 unsigned int new_current = current_check.curret_position+current_check.sub; 16 if (new_current == s.length()) 17 { 18 return current_check.layer; 19 } 20 else 21 { 22 for (unsigned int i = s.length()-new_current; i >= 1; --i) 23 { 24 node sub_node = {new_current, i, current_check.layer+1}; 25 node_queue.push(sub_node); 26 } 27 } 28 } 29 } 30 return -1; 31 } 32 33 private: 34 struct node 35 { 36 unsigned int curret_position; 37 unsigned int sub; 38 int layer; 39 }; 40 bool is_palindrome(string s) 41 { 42 unsigned int i = 0; 43 string::iterator it = s.begin(); 44 string::reverse_iterator it2 = s.rbegin(); 45 while (i < s.length()/2 && it != s.end()) 46 { 47 if (*it != *it2) 48 { 49 return false; 50 } 51 ++i; 52 ++it; 53 ++it2; 54 } 55 return true; 56 } 57 };
但是这样仍然显示Time Limit Exceeded,因为在最坏情况下,这个算法还是要遍历大多数层级,而这个测试用例就是很少回文的情况。跑到41层的时候队列长度就已经超过100万了
思考一下,我们需要的只是最小的分割次数,但是我之前的思路总是离不开树的遍历,其实是获取了具体的分割结果,付出极大的计算代价。类似之前做过的解一道题(两篇博客居然相隔两年,汗)只聚焦于分割次数,可以改用动态规划来做:
令d[i]为s[0…i]的最小分割次数,s[0…i]可分割为s[0…j]和s[j+1…i],若s[j+1…i]是回文,则d[i] = min(d[j]+1,d[i]).修改后代码如下:
class Solution { public: int minCut_2(string s) { vector<int> dp; for (unsigned int i = 1; i <= s.length();++i) { if (is_palindrome(s.substr(0, i))) { dp.push_back(0); continue; } else { dp.push_back(i-1); } for (unsigned int j = 1; j < i; j++) { string current_substr = s.substr(j, i-j); if (is_palindrome(current_substr)) { if (dp[i-1] > dp[j-1]+1) { dp[i-1] = dp[j-1]+1; } } } } return dp[s.length()-1]; } private: bool is_palindrome(string s) { unsigned int i = 0; string::iterator it = s.begin(); string::reverse_iterator it2 = s.rbegin(); while (i < s.length()/2 && it != s.end()) { if (*it != *it2) { return false; } ++i; ++it; ++it2; } return true; } };
但是还是Time Limit Exceeded,但是这次通不过的测试用例是:
"aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaabbaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa"
字符串长度1462,搞不定,没思路了,看discussion里别人的方法,原来是不仅最小分割数做了动态规划,子串的回文判断也用了动态规划:
用pal[i][j]记录子串s[i..j]是否是回文,根据pal[j+1][i-1]与s[i]==s[j]判断pal[j][i]是否是回文。修改代码如下:
class Solution { public: int minCut(string s) { if(s.empty()) return 0; int n = s.length(); vector<vector<bool>> pal(n,vector<bool>(n,false)); vector<int> dp(n); for (int i = 0; i < n;++i) { dp[i] = i>1 ? dp[i-1]+1 : i; pal[i][i] = true; for (int j = 0; j < i; j++) { if(s[i]==s[j] && (i-j<2 || pal[j+1][i-1])) { pal[j][i]=true; if (0 == j) { dp[i] = 0; } else if (dp[j-1]+1 < dp[i]) { dp[i] = dp[j-1]+1; } } } } return dp[n-1]; } };
提交后终于Accepted,耗时244ms。
做这题花费了一天时间,把树的遍历和动态规划也都再复习了一遍,获益匪浅。