c语言写一元一次函数图像,一次函数与一元一次不等式(洋葱数学)

一次函数与一元一次不等式(洋葱数学)

37cd00e8941525898a5730ff845e2c69.png

一、基本知识点考点:

1、一次函数 y = kx+b (k ≠0 ) 与一元一次不等式的关系:

y>0,则 kx + b > 0 ; y﹤0,则 kx + b < 0 。

2、如图,直线y=kx+b交坐标轴于A(﹣2,0),B(0,3)两点,则不等式kx+b>0的解集是( D )。

A、x>3 B、﹣2<x<3 C、x<﹣2 D、x>﹣2

6efe2915b7fb09eac658870044217025.png

第2题图(1)

3、一次函数y=3x+b和y=ax﹣3的图象如图所示,其交点为P(﹣2,﹣5),则不等式3x+b>ax﹣3的解集在数轴上表示正确的是( C)

cae7c3325d1a91870203e586cbedb222.png

第3题图(2)

4、已知一次函数y =﹣2x+a与 y = x+b的图象如图所示,则关于x的不等式﹣2x+a≤x+b 的解集是 x ≥ -1 。

f6377acec3ae260d1cc5a9edca50e7c7.png

第4题图(3)

5、如图,一次函数y=k1x+b1的图象l1与y=k2x+b2的图象l2相交于点P,则关于x的不等式k1x+b1>k2x+b2的解集是 x < -2 。 .

881f5410767b816f262e98a48500b2f1.png

第5题图(4)

二、题型解析:

1、利用一次函数的图象解一元一次不等式kx+b>0(或 kx+b<0)

例1、如图,直线y=kx+b经过A(2,1),B(﹣1,﹣2)两点,则不等式﹣2<kx+b<1的解集为( D )

A、﹣2<x<2 B、﹣1<x<1

C、﹣2<x<1 D、﹣1<x<2

9904ca07782e3dd47f18df6f1960eb1f.png

例题1图(5)

解析:由题意可得一次函数图象在y=1的下方时 x<2,

在y=﹣1的上方时 x>﹣1,故关于x的不等式﹣2<kx+b<1的解集是﹣1<x<2.故选D。

例题2、如图,直线y=kx+b交坐标轴于A,B两点,则不等式kx+b≤0的解集在数轴上表示正确的是( B )。

6e499faf9b0dfae83d5a40395a1b5fb2.png

例题2图(6)

解析:由图象可以看出,x轴及其下方的函数图象所对应自变量的取值为x≤﹣2,

所以不等式kx+b≤0的解集是x≤﹣2.故选B。

2、利用一次函数的图象解一元一次不等式 k1x+b1>k2x+b2(或k1x+b1<k2x+b2)

例题3、同一直角坐标系中,一次函数y1=k1x+b与正比例函数y2=k2x的图象如图所示,则满足y1≥y2的x取值范围是( A)

A.x≤﹣2 B.x≥﹣2 C.x<﹣2 D.x>﹣2

9379a9ee0f98de0c36e59ccaafcc8432.png

例题3图(7)

解析:当x≤﹣2时,直线l1:y1=k1x+b1 都在直线l2:y2=k2x的上方,

即y1≥y2.故选A。

例题4、如图,直线y=﹣2x 与直线y=kx+b 相交于点A(a,2),并且直线y=kx+b经过x轴上点B(2,0)

(1)求直线y=kx+b的解析式;

(2)求两条直线与y轴围成的三角形面积;

(3)直接写出不等式(k+2)x+b≥0的解集。

4fb5a466db22c998f6b2eb57ab4ea083.png

例题4图(8)

解:(1)把A(a,2)代入y=﹣2x中,得﹣2a=2,∴a=﹣1,∴A(﹣1,2)

把A(﹣1,2),B(2,0)代入y=kx+b中解得:

∴k=﹣2/3 ,b= 4/3,

∴一次函数的解析式是y=﹣ 2/3 x+ 4/3 。

2)设直线AB与y轴交于点C,则C(0,4/3 )

2efcf485c5020dbb91b99ef4a1de482b.png

图(9)

(3)不等式(k+2)x+b≥0可以变形为kx+b≥﹣2x,结合图象得到解集为:x≥﹣1。

三、拓展提高:

例题1、

2c2467dd72640033ca83f6ead852105c.png

例题1图(10)

例题2、

8a0d89ec9bfa8025c48e9ba5805b073a.png

例题2图(11)

例题3、

6d111ee053a6e9ed314204805e1c94d8.png

例题3图(12)

例题4、

6c18507c149c85c847f42d79b9e03302.png

例题4图(13)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值