bzoj 1927 [Sdoi2010]星际竞速【最小费用最大流】

果然还是不会建图…
设\( i \)到\( j \)有通路,代价为\( w[i][j] \),瞬移到i代价为\( a[i] \),瞬移到i代价为\( a[j] \),逗号前是流量。
1242898-20180103200918659-724309064.png
因为每个点只能经过一次,所以流量限制为1,注意到从s开始很难保证出发点不同,所以但是又有联通条件,所以考虑每个扩展过的点(实际不用考虑反正早晚要扩展到)只向外扩展一个点,也就是每次只选两个联通的点(包括瞬移可达)
拆点的作用是加上费用,\( s \)到所有\( i \)连流量1费用0的边,所有\(i \)向t连流量1费用0的边,\( i \)到\( i+n \)连流量1费用\( a[i] \)的边,对于可以相互到达的\( i、j \),连流量为1费用为\( v[i][j] \)的边(\( u<v \))

是不是有点像最小路径覆盖?

#include<iostream>
#include<cstdio>
#include<queue>
using namespace std;
const int N=5005,inf=1e9;
int n,m,a[N],s,t,ans,fr[N],dis[N],h[N],cnt=1;
bool v[N];
struct qwe
{
    int ne,no,to,va,c;
}e[N*100];
int read()
{
    int r=0,f=1;
    char p=getchar();
    while(p>'9'||p<'0')
    {
        if(p=='-')
            f=-1;
        p=getchar();
    }
    while(p>='0'&&p<='9')
    {
        r=r*10+p-48;
        p=getchar();
    }
    return r*f;
}
void add(int u,int v,int w,int c)
{
    cnt++;
    e[cnt].ne=h[u];
    e[cnt].no=u;
    e[cnt].to=v;
    e[cnt].va=w;
    e[cnt].c=c;
    h[u]=cnt;
}
void ins(int u,int v,int w,int c)
{
    add(u,v,w,c);
    add(v,u,0,-c);
}
bool spfa()
{
    queue<int>q;
    for(int i=s;i<=t;i++)
        dis[i]=inf;
    dis[s]=0;
    v[s]=1;
    q.push(s);
    while(!q.empty())
    {
        int u=q.front();
        q.pop();
        v[u]=0;
        for(int i=h[u];i;i=e[i].ne)
            if(e[i].va>0&&dis[e[i].to]>dis[u]+e[i].c)
            {
                dis[e[i].to]=dis[u]+e[i].c;
                fr[e[i].to]=i;
                if(!v[e[i].to])
                {
                    v[e[i].to]=1;
                    q.push(e[i].to);
                }
            }
    }
    return dis[t]!=inf;
}
void mcf()
{
    int x=inf;
    for(int i=fr[t];i;i=fr[e[i].no])
        x=min(x,e[i].va);
    for(int i=fr[t];i;i=fr[e[i].no])
    {
        ans+=x*e[i].c;
        e[i].va-=x;
        e[i^1].va+=x;
    }
}
int main()
{
    n=read(),m=read();
    t=2*n+1;
    for(int i=1;i<=n;i++)
    {
        a[i]=read();
        ins(s,i,1,0);
        ins(i+n,t,1,0);
        ins(s,i+n,1,a[i]);
    }
    for(int i=1;i<=m;i++)
    {
        int u=read(),v=read(),w=read();
        if(u>v)
            swap(u,v);
        ins(u,v+n,1,w);
    }
    while(spfa())
        mcf();
    printf("%d\n",ans);
    return 0;
}

转载于:https://www.cnblogs.com/lokiii/p/8185495.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值