bzoj 3083 遥远的国度 树剖+线段树

题面

题目传送门

解法

如果没有换根,就是树剖+线段树的板子题

如果有换根,看当前的根是否为\(x\)的后代,如果不是,那么\(x\)的子树不会受到任何影响,如果是,那么直接删除对应区间然后求最小值即可

时间复杂度:\(O(q\ log^2\ n)\)

代码

#include <bits/stdc++.h>
#define N 100010
using namespace std;
template <typename node> void read(node &x) {
    x = 0; int f = 1; char c = getchar();
    while (!isdigit(c)) {if (c == '-') f = -1; c = getchar();}
    while (isdigit(c)) x = x * 10 + c - '0', c = getchar(); x *= f;
}
int n, m, cnt, Time;
int a[N], d[N], f[N], siz[N], son[N], dfn[N], top[N], Real[N], g[N][21];
struct Edge {
    int next, num;
} e[N * 3];
struct SegmentTree {
    struct Node {
        int l, r, fl, minv;
    } t[N * 4];
    void update(int k) {
        t[k].minv = min(t[k << 1].minv, t[k << 1 | 1].minv);
    }
    void build(int k, int l, int r) {
        t[k] = (Node) {l, r, 0, INT_MAX};
        if (l == r) {t[k].minv = a[Real[l]]; return;}
        int mid = (l + r) >> 1;
        build(k << 1, l, mid);
        build(k << 1 | 1, mid + 1, r);
        update(k);
    }
    void pushdown(int k) {
        int x = t[k].fl; t[k].fl = 0;
        int ls = k << 1, rs = k << 1 | 1;
        t[ls].fl = t[ls].minv = t[rs].fl = t[rs].minv = x;
    }
    void modify(int k, int L, int R, int v) {
        int l = t[k].l, r = t[k].r;
        if (L <= l && r <= R) {
            t[k].fl = t[k].minv = v;
            return;
        }
        if (t[k].fl) pushdown(k);
        int mid = (l + r) >> 1;
        if (L <= mid && mid < R)
            modify(k << 1, L, mid, v), modify(k << 1 | 1, mid + 1, R, v);
        if (R <= mid) modify(k << 1, L, R, v);
        if (L > mid) modify(k << 1 | 1, L, R, v);
        update(k);
    }
    int query(int k, int L, int R) {
        if (L > R) return INT_MAX;
        int l = t[k].l, r = t[k].r;
        if (L <= l && r <= R) return t[k].minv;
        if (t[k].fl) pushdown(k);
        int mid = (l + r) >> 1;
        if (R <= mid) return query(k << 1, L, R);
        if (L > mid) return query(k << 1 | 1, L, R);
        return min(query(k << 1, L, mid), query(k << 1 | 1, mid + 1, R));
    }
} T;
void add(int x, int y) {
    e[++cnt] = (Edge) {e[x].next, y};
    e[x].next = cnt;
}
void dfs1(int x, int fa) {
    d[x] = d[fa] + 1, siz[x] = 1, f[x] = fa;
    for (int i = 1; i <= 20; i++)
        g[x][i] = g[g[x][i - 1]][i - 1];
    for (int p = e[x].next; p; p = e[p].next) {
        int k = e[p].num;
        if (k == fa) continue; g[k][0] = x;
        dfs1(k, x); siz[x] += siz[k];
        if (siz[son[x]] < siz[k]) son[x] = k;
    }
}
void dfs2(int x, int tp) {
    top[x] = tp, dfn[x] = ++Time, Real[Time] = x;
    if (!son[x]) return; dfs2(son[x], tp);
    for (int p = e[x].next; p; p = e[p].next) {
        int k = e[p].num;
        if (k == f[x] || k == son[x]) continue;
        dfs2(k, k);
    }
}
void Modify(int x, int y, int v) {
    int fx = top[x], fy = top[y];
    while (fx != fy) {
        if (d[fx] < d[fy]) swap(x, y), swap(fx, fy);
        T.modify(1, dfn[fx], dfn[x], v);
        x = f[fx], fx = top[x];
    }
    if (d[x] > d[y]) swap(x, y);
    T.modify(1, dfn[x], dfn[y], v);
}
int calc(int x, int y) {
    for (int i = 20; i >= 0; i--)
        if (d[g[x][i]] - d[y] >= 1) x = g[x][i];
    return x;
}
int solve(int l, int r, int L, int R) {
    return min(T.query(1, l, L - 1), T.query(1, R + 1, r));
}
main() {
    read(n), read(m); cnt = n;
    for (int i = 1; i < n; i++) {
        int x, y; read(x), read(y);
        add(x, y), add(y, x);
    }
    for (int i = 1; i <= n; i++) read(a[i]);
    int rt; read(rt);
    dfs1(rt, 0), dfs2(rt, 0);
    T.build(1, 1, n);
    while (m--) {
        int opt; read(opt);
        if (opt == 1) read(rt);
        if (opt == 2) {
            int x, y, v; read(x), read(y), read(v);
            Modify(x, y, v);
        }
        if (opt == 3) {
            int x; read(x);
            if (x == rt) {cout << T.query(1, 1, n) << "\n"; continue;}
            if (dfn[rt] < dfn[x] || dfn[rt] > dfn[x] + siz[x] - 1 || (dfn[rt] <= dfn[x] && dfn[x] + siz[x] - 1 <= dfn[rt] + siz[rt] - 1)) {
                cout << T.query(1, dfn[x], dfn[x] + siz[x] - 1) << "\n";
                continue;
            }
            int t = calc(rt, x), ans = solve(1, n, dfn[t], dfn[t] + siz[t] - 1);
            cout << ans << "\n";
        }
    }
    return 0;
}

转载于:https://www.cnblogs.com/copperoxide/p/9478397.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值