题面
解法
如果没有换根,就是树剖+线段树的板子题
如果有换根,看当前的根是否为\(x\)的后代,如果不是,那么\(x\)的子树不会受到任何影响,如果是,那么直接删除对应区间然后求最小值即可
时间复杂度:\(O(q\ log^2\ n)\)
代码
#include <bits/stdc++.h>
#define N 100010
using namespace std;
template <typename node> void read(node &x) {
x = 0; int f = 1; char c = getchar();
while (!isdigit(c)) {if (c == '-') f = -1; c = getchar();}
while (isdigit(c)) x = x * 10 + c - '0', c = getchar(); x *= f;
}
int n, m, cnt, Time;
int a[N], d[N], f[N], siz[N], son[N], dfn[N], top[N], Real[N], g[N][21];
struct Edge {
int next, num;
} e[N * 3];
struct SegmentTree {
struct Node {
int l, r, fl, minv;
} t[N * 4];
void update(int k) {
t[k].minv = min(t[k << 1].minv, t[k << 1 | 1].minv);
}
void build(int k, int l, int r) {
t[k] = (Node) {l, r, 0, INT_MAX};
if (l == r) {t[k].minv = a[Real[l]]; return;}
int mid = (l + r) >> 1;
build(k << 1, l, mid);
build(k << 1 | 1, mid + 1, r);
update(k);
}
void pushdown(int k) {
int x = t[k].fl; t[k].fl = 0;
int ls = k << 1, rs = k << 1 | 1;
t[ls].fl = t[ls].minv = t[rs].fl = t[rs].minv = x;
}
void modify(int k, int L, int R, int v) {
int l = t[k].l, r = t[k].r;
if (L <= l && r <= R) {
t[k].fl = t[k].minv = v;
return;
}
if (t[k].fl) pushdown(k);
int mid = (l + r) >> 1;
if (L <= mid && mid < R)
modify(k << 1, L, mid, v), modify(k << 1 | 1, mid + 1, R, v);
if (R <= mid) modify(k << 1, L, R, v);
if (L > mid) modify(k << 1 | 1, L, R, v);
update(k);
}
int query(int k, int L, int R) {
if (L > R) return INT_MAX;
int l = t[k].l, r = t[k].r;
if (L <= l && r <= R) return t[k].minv;
if (t[k].fl) pushdown(k);
int mid = (l + r) >> 1;
if (R <= mid) return query(k << 1, L, R);
if (L > mid) return query(k << 1 | 1, L, R);
return min(query(k << 1, L, mid), query(k << 1 | 1, mid + 1, R));
}
} T;
void add(int x, int y) {
e[++cnt] = (Edge) {e[x].next, y};
e[x].next = cnt;
}
void dfs1(int x, int fa) {
d[x] = d[fa] + 1, siz[x] = 1, f[x] = fa;
for (int i = 1; i <= 20; i++)
g[x][i] = g[g[x][i - 1]][i - 1];
for (int p = e[x].next; p; p = e[p].next) {
int k = e[p].num;
if (k == fa) continue; g[k][0] = x;
dfs1(k, x); siz[x] += siz[k];
if (siz[son[x]] < siz[k]) son[x] = k;
}
}
void dfs2(int x, int tp) {
top[x] = tp, dfn[x] = ++Time, Real[Time] = x;
if (!son[x]) return; dfs2(son[x], tp);
for (int p = e[x].next; p; p = e[p].next) {
int k = e[p].num;
if (k == f[x] || k == son[x]) continue;
dfs2(k, k);
}
}
void Modify(int x, int y, int v) {
int fx = top[x], fy = top[y];
while (fx != fy) {
if (d[fx] < d[fy]) swap(x, y), swap(fx, fy);
T.modify(1, dfn[fx], dfn[x], v);
x = f[fx], fx = top[x];
}
if (d[x] > d[y]) swap(x, y);
T.modify(1, dfn[x], dfn[y], v);
}
int calc(int x, int y) {
for (int i = 20; i >= 0; i--)
if (d[g[x][i]] - d[y] >= 1) x = g[x][i];
return x;
}
int solve(int l, int r, int L, int R) {
return min(T.query(1, l, L - 1), T.query(1, R + 1, r));
}
main() {
read(n), read(m); cnt = n;
for (int i = 1; i < n; i++) {
int x, y; read(x), read(y);
add(x, y), add(y, x);
}
for (int i = 1; i <= n; i++) read(a[i]);
int rt; read(rt);
dfs1(rt, 0), dfs2(rt, 0);
T.build(1, 1, n);
while (m--) {
int opt; read(opt);
if (opt == 1) read(rt);
if (opt == 2) {
int x, y, v; read(x), read(y), read(v);
Modify(x, y, v);
}
if (opt == 3) {
int x; read(x);
if (x == rt) {cout << T.query(1, 1, n) << "\n"; continue;}
if (dfn[rt] < dfn[x] || dfn[rt] > dfn[x] + siz[x] - 1 || (dfn[rt] <= dfn[x] && dfn[x] + siz[x] - 1 <= dfn[rt] + siz[rt] - 1)) {
cout << T.query(1, dfn[x], dfn[x] + siz[x] - 1) << "\n";
continue;
}
int t = calc(rt, x), ans = solve(1, n, dfn[t], dfn[t] + siz[t] - 1);
cout << ans << "\n";
}
}
return 0;
}