bzoj 1833 [ZJOI2010]count 数字计数

题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1833

数字计数模板。自己yy的做法。感觉挺好的。

前导0的数量只和位数有关。

注意pw里的 ll 别写成 int !!!为这个弃疗,好几天后才一眼看出,把它A了……

#include<iostream>
#include<cstdio>
#include<cstring>
#define ll long long
using namespace std;
const int N=12;
ll l,r,s[N+5],c[N+5],ct,sum[15],nm[N+5];
ll pw(int k)
{
    ll mul=10,ret=1;//ll
    while(k)
    {
        if(k&1)ret*=mul;
        mul*=mul;k>>=1;
    }
    return ret;
}
int cal(ll a)
{
    if(!a)return 1;
    int cnt=0;
    while(a)a/=10,cnt++;
    return cnt;
}
void init()
{
    int cnt=cal(r);
    for(int i=1;i<=cnt;i++)
        s[i]=s[i-1]*10+pw(i-1);
    for(int i=2;i<=cnt;i++)
        c[i]=pw(i-1)+c[i-1];
}
int pre(ll a)
{
    int cnt=cal(a);
    for(int i=1;i<=cnt;i++)nm[i]=a%10,a/=10;
    return cnt;
}
int main()
{
    scanf("%lld%lld",&l,&r);
    init();ct=pre(r);
    for(int i=ct;i;i--)
    {
        for(int j=0;j<=9;j++)
            sum[j]+=nm[i]*s[i-1]+(nm[i]>j)*pw(i-1);//nm[i]表示从0到nm[i]-1 
        sum[nm[i]]+=(r%pw(i-1))+1;
    }
    sum[0]-=c[ct];
    if(l)
    {
        ct=pre(l-1);
        for(int i=ct;i;i--)
        {
            for(int j=0;j<=9;j++)
                sum[j]-=nm[i]*s[i-1]+(nm[i]>j)*pw(i-1);//这里是+!(因为是-=) 
            sum[nm[i]]-=((l-1)%pw(i-1))+1;
        }
        sum[0]+=c[ct];
    }
    for(int i=0;i<=9;i++)printf("%lld ",sum[i]);
    return 0;
}

 

转载于:https://www.cnblogs.com/Narh/p/9196724.html

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
题目描述 有一个 $n$ 个点的棋盘,每个点上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字和为 $S$。定义一个点 $(x,y)$ 的权值为 $a_x+a_y$,求所有满足条件的路径中,所有点的权值和的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个点的数字。 输出格式 输出一个整数,表示所有满足条件的路径中,所有点的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (树形dp) $O(n^3)$ 我们可以先将所有点的权值求出来,然后将其看作是一个有权值的图,问题就转化为了在这个图中求从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有点的权值和的最小值。 我们可以使用树形dp来解决这个问题,具体来说,我们可以将这个图看作是一棵树,每个点的父节点是它的前驱或者后继,然后我们从根节点开始,依次向下遍历,对于每个节点,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有点的权值和的最小值,然后再将这个值加上当前节点的权值,就可以得到从根节点到当前节点的路径中,所有点的权值和的最小值。 时间复杂度 树形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有点的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示点 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值