BZOJ 4804: 欧拉心算

数论题不多BB,直接开始推导吧:

\(\sum_{i=1}^n \sum_{j=1}^n \phi(gcd(i,j))\)

\(=\sum_{i=1}^n \sum_{j=1}^n \sum_{d=1}^n [gcd(i,j)=d]\phi(d)\)

\(=\sum_{d=1}^n \phi(d)\cdot(\sum_{i=1}^{\lfloor\frac{n}{d}\rfloor} \sum_{j=1}^{\lfloor\frac{n}{d}\rfloor} [gcd(i,j)=1])\)

然后\(\sum_{i=1}^{\lfloor\frac{n}{d}\rfloor} \sum_{j=1}^{\lfloor\frac{n}{d}\rfloor} [gcd(i,j)=1]=2\cdot\sum_{i=1}^{\lfloor\frac{n}{d}\rfloor} \phi(i) -1\),这个也是一个比较常用的结论了吧。具体可以看Luogu P2568 GCD的推导,之后为了方便,我们记\(sum_x=\sum_{i=1}^x \phi(i)\)

则上式\(=\sum_{d=1}^n(\phi(d)\cdot (2\cdot sum_{\lfloor\frac{n}{d}\rfloor}-1))\)

\(=2\cdot \sum_{d=1}^n(\phi(d)\cdot sum_{\lfloor\frac{n}{d}\rfloor})-sum_n\)

接下来就好做了,我们先把欧拉函数求前缀和,然后对于询问除法分块处理不同的\(sum_{\lfloor\frac{n}{d}\rfloor}\)即可。

复杂度\(O(n+T\sqrt n)\),轻松跑过

CODE

#include<cstdio>
#define RI register int
using namespace std;
const int P=1e7;
int prime[P+5],phi[P+5],cnt,n,t; long long ans,sum[P+5]; bool vis[P+5];
inline void resolve(void)
{
    vis[1]=sum[1]=phi[1]=1; for (RI i=2;i<=P;++i)
    {
        if (!vis[i]) prime[++cnt]=i,phi[i]=i-1;
        for (RI j=1;j<=cnt&&i*prime[j]<=P;++j)
        {
            vis[i*prime[j]]=1; if (i%prime[j]) phi[i*prime[j]]=phi[i]*(prime[j]-1);
            else { phi[i*prime[j]]=phi[i]*prime[j]; break; }
        }
        sum[i]=sum[i-1]+phi[i];
    }
}
int main()
{
    for (scanf("%d",&t),resolve();t;--t)
    {
        scanf("%d",&n); ans=0; RI i,l,r;
        for (l=1;l<=n;l=r+1) r=n/(n/l),ans+=sum[n/l]*(sum[r]-sum[l-1]);
        printf("%lld\n",(ans<<1)-sum[n]);
    }
    return 0;
}

转载于:https://www.cnblogs.com/cjjsb/p/9720241.html

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值