OLED中的Demura

本文详细介绍了OLED显示中的Demura技术,包括为何需要补偿、补偿分类,特别是外部补偿中的光学抽取式Demura。通过检测和算法处理,Demura旨在消除OLED面板的亮度和颜色不均匀性(mura现象),提高显示质量。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

OLED作为一种电流型发光器件已越来越多地被应用于高性能显示中。由于它自发光的特性,与LCD相比,AMOLED具有高对比度、超轻薄、可弯曲等诸多优点。但是,亮度均匀性和残像仍然是它目前面临的两个主要难题,要解决这两个问题,除了工艺的改善,就不得不提到补偿技术。

补偿方法可以分为内部补偿外部补偿两大类。内部补偿是指在像素内部利用TFT构建的子电路进行补偿的方法。外部补偿是指通过外部的驱动电路或设备感知像素的电学或光学特性然后进行补偿的方法。

1. 为何要对OLED进行补偿?

介绍补偿技术之前,首先我们来看看AMOLED为什么需要补偿。下图所示为一个最简单的AMOLED像素电路,它由两个薄膜晶体管(TFT)构建像素电路为OLED器件提供相应的电流。

与一般的非晶硅薄膜晶体管(amorphous-Si TFT)相比,LTPS TFT和Oxide TFT具有更高的迁移率和更稳定的特性,更适合应用于AMOLED显示中。在中小尺寸应用中多采用低温多晶硅薄膜晶体管(LTPS TFT),而在大尺寸应用中多采用氧化物薄膜晶体管(Oxide TFT)。这是因为LTPS TFT迁移率更大,器件所占面积更小,更适合于高PPI的应用。而Oxide TFT均匀性更好,工艺与a-Si兼容,更适合在高世代线上生产大尺寸AMOLED面板。

它们各有缺点。

由于晶化工艺的局限性,在大面积玻璃基板上制作的LTPS TFT,不同位置的TFT常常在诸如阈值电压、迁移率等电学参数上具有非均匀性,这种非均匀性会转化为OLED显示器件的电流差异和亮度差异,并被人眼所感知,即mura现象。

Oxide TFT 虽然工艺的均匀性较好,但是与a-Si TFT类似,在长时间加压和高温下,其阈值电压会出现漂移,由于显示画面不同,面板各部分TFT的阈值漂移量不同,会造成显示亮度差异,由于这种差异与之前显示的图像有关,因此常呈现为残影现象,也就是通常所说的残像。

2. OLED补偿分类</

### Demura 技术原理 Demura 是一种用于补偿和消除显示器上 Mura 缺陷的技术。Mura 缺陷是指显示屏表面存在的不均匀现象,通常表现为亮度或颜色上的异常区域。为了提高显示质量并满足严格的质量标准,技术人员开发出了 AOI (Automatic Optical Inspection) 设备来进行 mura 的检测,在检测到 mura 后再通过 Demura 进行补偿处理[^1]。 对于 AMOLED 显示器而言,Color Demura 不仅能够调整屏幕各处的亮度一致性,还能改善色度的一致性。这种全面性的 Color Demura 可以根据不同制造商的需求和技术特点选用不同的测试图案来实现最佳效果,例如灰阶图像或者 RGBW 图像等[^2]。 ### 应用场景 随着 OLED 和驱动芯片技术的进步,这类高精度校正方法被广泛应用于智能手机和其他高端电子产品的生产过程中,从而提高了产品整体质量和用户体验感[^3]。此外,在 TFT-LCD 生产领域,尽管该行业已相当成熟,但对于某些特定条件下产生的 mura 问题仍然需要借助于类似 Demura 的解决方案加以克服;例如针对高温环境下可能出现的问题采取相应的措施确保产品质量稳定可靠[^4]。 ```python def apply_demura_correction(image_data): """ 对输入图像数据执行Demura矫正算法 参数: image_data -- 原始图像像素值数组 返回: corrected_image -- 经过Demura矫正后的图像 """ # 获取原始图像尺寸 height, width = image_data.shape[:2] # 创建一个与原图相同大小的空白矩阵作为输出容器 corrected_image = np.zeros_like(image_data) # 遍历每一个像素位置(i,j),计算对应的修正系数kij, # 并将其乘回给对应位置的颜色分量cijk得到最终结果C'ijk= kij * cijk for i in range(height): for j in range(width): r,g,b = image_data[i][j] kr = calculate_brightness_factor(r,i,j,'red') kg = calculate_brightness_factor(g,i,j,'green') kb = calculate_brightness_factor(b,i,j,'blue') corrected_image[i][j] = [kr*r ,kg*g,kb*b] return corrected_image def calculate_brightness_factor(pixel_value,x,y,color_channel): """根据具体位置(x,y)及色彩通道(color_channel), 计算出相应位置所需的亮度调节因子""" pass # 实际逻辑需依据具体情况定义 ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值