机器学习之使用贝叶斯算法实现拼写检查器

一、任务简介

  假设身处这样一个场景,用户输入的是一个错误单词,而我们需要做的就是来预测出用户实际想输入的单词。如果这个单词是正确的,那么结果肯定就是自己本身了。如果用户实际输入tha,那这个单词肯定是错误的,我们就可以通过一种算法来得到用户可能实际上真正想输入的是the。这种算法可以通过贝叶斯算法来解决 argmaxc P(c|w) -> argmaxc P(w|c) P(c) / P(w)。

  P(c),文章中出现一个正确拼写词 c 的概率,也就是说,在语料库中,c 出现的概率有多大,也就是贝叶斯算法中的先验概率。
  P(w|c),在用户想键入 c 的情况下敲成 w 的概率. 因为这个是代表用户会以多大的概率把 c 敲错成 w,这里通过编辑距离来计算这个值。
  argmaxc, 用来枚举所有可能的 c 并且选取概率最大的。

  语料库数据集链接为:https://pan.baidu.com/s/1JnkJ1oY77KRQx05CYuM_Tg。提取码:tz49 

二、代码实现

  首先读取数据集,然后进行数据预处理,要是在这个过程中,遇到我们从来没有过见过的新词怎么办。 意思就是假如说一个词拼写完全正确,但是语料库中没有包含这个词,从而这个词也永远不会出现在训练集中。 于是, 我们就要返回出现这个词的概率是0。 这个情况不太妙, 因为概率为0这个代表了这个事件绝对不可能发生, 而在我们的概率模型中,我们期望用一个很小的概率来代表这种情况。lambda: 1

import re, collections

# 把语料中的单词全部抽取出来, 转成小写, 并且去除单词中间的特殊符号
def words(text):
    return re.findall('[a-z]+', text.lower())

alphabet = 'abcdefghijklmnopqrstuvwxyz'

def train(features):
    model = collections.defaultdict(lambda: 1)
    for f in features:
        model[f] += 1
    return model

NWORDS = train(words(open('big.txt').read()))
NWORDS

  统计出来的词频为:

   

  编辑距离,两个词之间的编辑距离定义为使用了几次插入(在词中插入一个单字母),删除(删除一个单字母),交换(交换相邻两个字母),替换(把一个字母换成另一个)的操作从一个词变到另一个词。

#返回所有与单词 w 编辑距离为 1 的集合
def edits1(word):
    n = len(word)
    return set([word[0:i]+word[i+1:] for i in range(n)] +                     # deletion
               [word[0:i]+word[i+1]+word[i]+word[i+2:] for i in range(n-1)] + # transposition
               [word[0:i]+c+word[i+1:] for i in range(n) for c in alphabet] + # alteration
               [word[0:i]+c+word[i:] for i in range(n+1) for c in alphabet])  # insertion

  对于编辑距离等于1来说得到的结果并不是那么全面,于是我们可以继续算出编辑距离等于2的单词(在1的基础上再进行一次循环即可)。

#返回所有与单词 w 编辑距离为 2 的集合
#在这些编辑距离为2的词中间, 只把那些正确的词作为候选词
def edits2(word):
    return set(e2 for e1 in edits1(word) for e2 in edits1(e1))

  经过一次试验发现与 something 编辑距离为2的单词居然达到了 114324 个。

  优化:在上面得到的这些编辑距离小于2的词中间,只把那些正确的词(在语料库中出现过的单词)作为候选词,只能返回 3 个单词: ‘smoothing’, ‘something’ 和 ‘soothing’,如下面的known函数所示。

  要为了使最后得到的结果概率最大,也就是说准确率更高,我们就要选择一种比较的方法。正常来说把一个元音拼成另一个的概率要大于辅音 (因为人常常把 hello 打成 hallo 这样),把单词的第一个字母拼错的概率会相对小,等等这些为了使准确率变高的方式很多。但是为了简单起见,我们选择了一个简单的方法: 编辑距离为1的正确单词比编辑距离为2的优先级高, 而编辑距离为0的正确单词优先级比编辑距离为1的高。

def known(words): return set(w for w in words if w in NWORDS)

#如果known(set)非空, candidate 就会选取这个集合, 而不继续计算后面的
def correct(word):
    # Python 惰性求值特性,在这里巧妙的用作优先级选择
    candidates = known([word]) or known(edits1(word)) or known_edits2(word) or [word]
    return max(candidates, key=lambda w: NWORDS[w])

  运行correct函数:

#appl #appla #learw #tess #morw
#apply #apply #learn #less #more correct('knon')

  得到结果,上面的测试用例可以自行验证。

'know'

 

转载于:https://www.cnblogs.com/xiaoyh/p/11370772.html

  • 0
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
朴素贝叶斯算法是一种基于贝叶斯定理的分类算法,它假设特征之间相互独立。这个假设使得算法具有较快的训练和预测速度,并且在处理大规模数据集时表现良好。 下面我将用图解的方式详细介绍朴素贝叶斯算法的原理和步骤。 首先,我们需要准备一个分类任务的数据集。假设我们要构建一个垃圾邮件分类,数据集包含了一些已经标记好的邮件样本,每个邮件样本都有一些特征(如邮件内容、发件人等)和对应的标签(垃圾邮件/非垃圾邮件)。 第一步是计算先验概率。先验概率指的是在没有任何特征信息的情况下,某个样本属于某个类别的概率。在我们的例子中,就是计算垃圾邮件和非垃圾邮件出现的概率。 第二步是计算条件概率。条件概率指的是在已知某个特征条件下,某个样本属于某个类别的概率。对于朴素贝叶斯算法来说,我们假设所有特征之间相互独立,因此可以将条件概率拆分为各个特征的概率乘积。我们需要计算每个特征在每个类别下的概率。 第三步是应用贝叶斯定理。贝叶斯定理可以根据已知的特征计算某个样本属于某个类别的后验概率。后验概率越大,就说明该样本属于该类别的可能性越大。 最后,我们可以根据后验概率进行分类预测。选择具有最大后验概率的类别作为预测结果。 总结一下,朴素贝叶斯算法通过计算先验概率、条件概率和应用贝叶斯定理,实现了对样本的分类预测。它的优势在于简单、快速,并且在一些特定的数据集上表现出色。然而,它的假设可能不符合实际情况,所以在实际应用中需要考虑和验证数据的特性和假设的合理性。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值